Datrys ar gyfer x
x = \frac{5 \sqrt{10}}{4} \approx 3.952847075
x = -\frac{5 \sqrt{10}}{4} \approx -3.952847075
Graff
Rhannu
Copïo i clipfwrdd
4x^{2}\times 6=375
Lluosi x a x i gael x^{2}.
24x^{2}=375
Lluosi 4 a 6 i gael 24.
x^{2}=\frac{375}{24}
Rhannu’r ddwy ochr â 24.
x^{2}=\frac{125}{8}
Lleihau'r ffracsiwn \frac{375}{24} i'r graddau lleiaf posib drwy dynnu a chanslo allan 3.
x=\frac{5\sqrt{10}}{4} x=-\frac{5\sqrt{10}}{4}
Cymryd isradd dwy ochr yr hafaliad.
4x^{2}\times 6=375
Lluosi x a x i gael x^{2}.
24x^{2}=375
Lluosi 4 a 6 i gael 24.
24x^{2}-375=0
Tynnu 375 o'r ddwy ochr.
x=\frac{0±\sqrt{0^{2}-4\times 24\left(-375\right)}}{2\times 24}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 24 am a, 0 am b, a -375 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 24\left(-375\right)}}{2\times 24}
Sgwâr 0.
x=\frac{0±\sqrt{-96\left(-375\right)}}{2\times 24}
Lluoswch -4 â 24.
x=\frac{0±\sqrt{36000}}{2\times 24}
Lluoswch -96 â -375.
x=\frac{0±60\sqrt{10}}{2\times 24}
Cymryd isradd 36000.
x=\frac{0±60\sqrt{10}}{48}
Lluoswch 2 â 24.
x=\frac{5\sqrt{10}}{4}
Datryswch yr hafaliad x=\frac{0±60\sqrt{10}}{48} pan fydd ± yn plws.
x=-\frac{5\sqrt{10}}{4}
Datryswch yr hafaliad x=\frac{0±60\sqrt{10}}{48} pan fydd ± yn minws.
x=\frac{5\sqrt{10}}{4} x=-\frac{5\sqrt{10}}{4}
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}