Datrys ar gyfer x
x=3
Graff
Rhannu
Copïo i clipfwrdd
3x^{2}x\left(x+1\right)+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
All y newidyn x ddim fod yn hafal i unrhyw un o’r gwerthoedd -1,0 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad wrth x\left(x+1\right), lluoswm cyffredin lleiaf x^{2}+x,x,x+1.
3x^{3}\left(x+1\right)+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 2 a 1 i gael 3.
3x^{4}+3x^{3}+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Defnyddio’r briodwedd ddosbarthu i luosi 3x^{3} â x+1.
3x^{4}+3x^{3}+5x^{2}\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Lluosi x a x i gael x^{2}.
3x^{4}+3x^{3}+5x^{3}+5x^{2}+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Defnyddio’r briodwedd ddosbarthu i luosi 5x^{2} â x+1.
3x^{4}+8x^{3}+5x^{2}+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Cyfuno 3x^{3} a 5x^{3} i gael 8x^{3}.
3x^{4}+8x^{3}+5x^{2}+\left(x^{2}+x\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Defnyddio’r briodwedd ddosbarthu i luosi x â x+1.
3x^{4}+8x^{3}+5x^{2}+7x^{2}+7x+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Defnyddio’r briodwedd ddosbarthu i luosi x^{2}+x â 7.
3x^{4}+8x^{3}+12x^{2}+7x+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Cyfuno 5x^{2} a 7x^{2} i gael 12x^{2}.
3x^{4}+10x^{3}+12x^{2}+7x+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Cyfuno 8x^{3} a 2x^{3} i gael 10x^{3}.
3x^{4}+10x^{3}+12x^{2}+10x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Cyfuno 7x a 3x i gael 10x.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-x\left(2+7x^{3}\right)
Defnyddio’r briodwedd ddosbarthu i luosi x+1 â 10x^{3}+12x+4 a chyfuno termau tebyg.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-\left(2x+7x^{4}\right)
Defnyddio’r briodwedd ddosbarthu i luosi x â 2+7x^{3}.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-2x-7x^{4}
I ddod o hyd i wrthwyneb 2x+7x^{4}, dewch o hyd i wrthwyneb pob term.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+14x+10x^{3}+4-7x^{4}
Cyfuno 16x a -2x i gael 14x.
3x^{4}+10x^{3}+12x^{2}+10x+16=3x^{4}+12x^{2}+14x+10x^{3}+4
Cyfuno 10x^{4} a -7x^{4} i gael 3x^{4}.
3x^{4}+10x^{3}+12x^{2}+10x+16-3x^{4}=12x^{2}+14x+10x^{3}+4
Tynnu 3x^{4} o'r ddwy ochr.
10x^{3}+12x^{2}+10x+16=12x^{2}+14x+10x^{3}+4
Cyfuno 3x^{4} a -3x^{4} i gael 0.
10x^{3}+12x^{2}+10x+16-12x^{2}=14x+10x^{3}+4
Tynnu 12x^{2} o'r ddwy ochr.
10x^{3}+10x+16=14x+10x^{3}+4
Cyfuno 12x^{2} a -12x^{2} i gael 0.
10x^{3}+10x+16-14x=10x^{3}+4
Tynnu 14x o'r ddwy ochr.
10x^{3}-4x+16=10x^{3}+4
Cyfuno 10x a -14x i gael -4x.
10x^{3}-4x+16-10x^{3}=4
Tynnu 10x^{3} o'r ddwy ochr.
-4x+16=4
Cyfuno 10x^{3} a -10x^{3} i gael 0.
-4x=4-16
Tynnu 16 o'r ddwy ochr.
-4x=-12
Tynnu 16 o 4 i gael -12.
x=\frac{-12}{-4}
Rhannu’r ddwy ochr â -4.
x=3
Rhannu -12 â -4 i gael 3.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}