Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

3x+5y=8,x-2y=-1
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
3x+5y=8
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
3x=-5y+8
Tynnu 5y o ddwy ochr yr hafaliad.
x=\frac{1}{3}\left(-5y+8\right)
Rhannu’r ddwy ochr â 3.
x=-\frac{5}{3}y+\frac{8}{3}
Lluoswch \frac{1}{3} â -5y+8.
-\frac{5}{3}y+\frac{8}{3}-2y=-1
Amnewid \frac{-5y+8}{3} am x yn yr hafaliad arall, x-2y=-1.
-\frac{11}{3}y+\frac{8}{3}=-1
Adio -\frac{5y}{3} at -2y.
-\frac{11}{3}y=-\frac{11}{3}
Tynnu \frac{8}{3} o ddwy ochr yr hafaliad.
y=1
Rhannu dwy ochr hafaliad â -\frac{11}{3}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=\frac{-5+8}{3}
Cyfnewidiwch 1 am y yn x=-\frac{5}{3}y+\frac{8}{3}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=1
Adio \frac{8}{3} at -\frac{5}{3} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=1,y=1
Mae’r system wedi’i datrys nawr.
3x+5y=8,x-2y=-1
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}3&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}3&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}3&5\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-5}&-\frac{5}{3\left(-2\right)-5}\\-\frac{1}{3\left(-2\right)-5}&\frac{3}{3\left(-2\right)-5}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 8+\frac{5}{11}\left(-1\right)\\\frac{1}{11}\times 8-\frac{3}{11}\left(-1\right)\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Gwneud y symiau.
x=1,y=1
Echdynnu yr elfennau matrics x a y.
3x+5y=8,x-2y=-1
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
3x+5y=8,3x+3\left(-2\right)y=3\left(-1\right)
I wneud 3x a x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 1 a holl dermau naill ochr yr ail â 3.
3x+5y=8,3x-6y=-3
Symleiddio.
3x-3x+5y+6y=8+3
Tynnwch 3x-6y=-3 o 3x+5y=8 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
5y+6y=8+3
Adio 3x at -3x. Mae'r termau 3x a -3x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
11y=8+3
Adio 5y at 6y.
11y=11
Adio 8 at 3.
y=1
Rhannu’r ddwy ochr â 11.
x-2=-1
Cyfnewidiwch 1 am y yn x-2y=-1. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=1
Adio 2 at ddwy ochr yr hafaliad.
x=1,y=1
Mae’r system wedi’i datrys nawr.