Datrys ar gyfer m
m=\frac{100000000000r^{2}\left(100rw^{2}+2943\right)}{667}
r\neq 0
Rhannu
Copïo i clipfwrdd
3\times 9.81r^{2}=6.67\times 10^{-11}m-w^{2}rr^{2}
Lluoswch ddwy ochr yr hafaliad â r^{2}.
3\times 9.81r^{2}=6.67\times 10^{-11}m-w^{2}r^{3}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 1 a 2 i gael 3.
29.43r^{2}=6.67\times 10^{-11}m-w^{2}r^{3}
Lluosi 3 a 9.81 i gael 29.43.
29.43r^{2}=6.67\times \frac{1}{100000000000}m-w^{2}r^{3}
Cyfrifo 10 i bŵer -11 a chael \frac{1}{100000000000}.
29.43r^{2}=\frac{667}{10000000000000}m-w^{2}r^{3}
Lluosi 6.67 a \frac{1}{100000000000} i gael \frac{667}{10000000000000}.
\frac{667}{10000000000000}m-w^{2}r^{3}=29.43r^{2}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{667}{10000000000000}m=29.43r^{2}+w^{2}r^{3}
Ychwanegu w^{2}r^{3} at y ddwy ochr.
\frac{667}{10000000000000}m=w^{2}r^{3}+\frac{2943r^{2}}{100}
Mae'r hafaliad yn y ffurf safonol.
\frac{\frac{667}{10000000000000}m}{\frac{667}{10000000000000}}=\frac{r^{2}\left(rw^{2}+29.43\right)}{\frac{667}{10000000000000}}
Rhannu dwy ochr hafaliad â \frac{667}{10000000000000}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
m=\frac{r^{2}\left(rw^{2}+29.43\right)}{\frac{667}{10000000000000}}
Mae rhannu â \frac{667}{10000000000000} yn dad-wneud lluosi â \frac{667}{10000000000000}.
m=\frac{10000000000000r^{2}\left(rw^{2}+29.43\right)}{667}
Rhannwch r^{2}\left(29.43+w^{2}r\right) â \frac{667}{10000000000000} drwy luosi r^{2}\left(29.43+w^{2}r\right) â chilydd \frac{667}{10000000000000}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}