Neidio i'r prif gynnwys
Datrys ar gyfer m
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

3\times 9.81r^{2}=6.67\times 10^{-11}m-w^{2}rr^{2}
Lluoswch ddwy ochr yr hafaliad â r^{2}.
3\times 9.81r^{2}=6.67\times 10^{-11}m-w^{2}r^{3}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 1 a 2 i gael 3.
29.43r^{2}=6.67\times 10^{-11}m-w^{2}r^{3}
Lluosi 3 a 9.81 i gael 29.43.
29.43r^{2}=6.67\times \frac{1}{100000000000}m-w^{2}r^{3}
Cyfrifo 10 i bŵer -11 a chael \frac{1}{100000000000}.
29.43r^{2}=\frac{667}{10000000000000}m-w^{2}r^{3}
Lluosi 6.67 a \frac{1}{100000000000} i gael \frac{667}{10000000000000}.
\frac{667}{10000000000000}m-w^{2}r^{3}=29.43r^{2}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{667}{10000000000000}m=29.43r^{2}+w^{2}r^{3}
Ychwanegu w^{2}r^{3} at y ddwy ochr.
\frac{667}{10000000000000}m=w^{2}r^{3}+\frac{2943r^{2}}{100}
Mae'r hafaliad yn y ffurf safonol.
\frac{\frac{667}{10000000000000}m}{\frac{667}{10000000000000}}=\frac{r^{2}\left(rw^{2}+29.43\right)}{\frac{667}{10000000000000}}
Rhannu dwy ochr hafaliad â \frac{667}{10000000000000}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
m=\frac{r^{2}\left(rw^{2}+29.43\right)}{\frac{667}{10000000000000}}
Mae rhannu â \frac{667}{10000000000000} yn dad-wneud lluosi â \frac{667}{10000000000000}.
m=\frac{10000000000000r^{2}\left(rw^{2}+29.43\right)}{667}
Rhannwch r^{2}\left(29.43+w^{2}r\right) â \frac{667}{10000000000000} drwy luosi r^{2}\left(29.43+w^{2}r\right) â chilydd \frac{667}{10000000000000}.