Datrys ar gyfer y
y = \frac{365}{204} = 1\frac{161}{204} \approx 1.789215686
Graff
Rhannu
Copïo i clipfwrdd
12\left(3\times 5+2\right)y+15\left(1\times 4+1\right)=20\left(7\times 3+1\right)
Lluoswch ddwy ochr yr hafaliad wrth 60, lluoswm cyffredin lleiaf 5,4,3.
12\left(15+2\right)y+15\left(1\times 4+1\right)=20\left(7\times 3+1\right)
Lluosi 3 a 5 i gael 15.
12\times 17y+15\left(1\times 4+1\right)=20\left(7\times 3+1\right)
Adio 15 a 2 i gael 17.
204y+15\left(1\times 4+1\right)=20\left(7\times 3+1\right)
Lluosi 12 a 17 i gael 204.
204y+15\left(4+1\right)=20\left(7\times 3+1\right)
Lluosi 1 a 4 i gael 4.
204y+15\times 5=20\left(7\times 3+1\right)
Adio 4 a 1 i gael 5.
204y+75=20\left(7\times 3+1\right)
Lluosi 15 a 5 i gael 75.
204y+75=20\left(21+1\right)
Lluosi 7 a 3 i gael 21.
204y+75=20\times 22
Adio 21 a 1 i gael 22.
204y+75=440
Lluosi 20 a 22 i gael 440.
204y=440-75
Tynnu 75 o'r ddwy ochr.
204y=365
Tynnu 75 o 440 i gael 365.
y=\frac{365}{204}
Rhannu’r ddwy ochr â 204.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}