Datrys ar gyfer α
\alpha =2
Rhannu
Copïo i clipfwrdd
-5\times 3+3^{\alpha }+6=0
Aildrefnu'r termau.
3^{\alpha }-9=0
Defnyddio rheolau esbonyddion a logarithmau i ddatrys yr hafaliad.
3^{\alpha }=9
Adio 9 at ddwy ochr yr hafaliad.
\log(3^{\alpha })=\log(9)
Cymryd logarithm dwy ochr yr hafaliad.
\alpha \log(3)=\log(9)
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
\alpha =\frac{\log(9)}{\log(3)}
Rhannu’r ddwy ochr â \log(3).
\alpha =\log_{3}\left(9\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}