Datrys ar gyfer x (complex solution)
x=\frac{2019}{y^{2}+y+1}
y\neq \frac{-1+\sqrt{3}i}{2}\text{ and }y\neq \frac{-\sqrt{3}i-1}{2}
Datrys ar gyfer x
x=\frac{2019}{y^{2}+y+1}
Datrys ar gyfer y (complex solution)
y=\frac{\sqrt{8076x-3x^{2}}}{2x}-\frac{1}{2}
y=-\frac{\sqrt{8076x-3x^{2}}}{2x}-\frac{1}{2}\text{, }x\neq 0
Datrys ar gyfer y
y=\frac{\sqrt{-3+\frac{8076}{x}}-1}{2}
y=\frac{-\sqrt{-3+\frac{8076}{x}}-1}{2}\text{, }x>0\text{ and }x\leq 2692
Graff
Rhannu
Copïo i clipfwrdd
2019=xy^{2}+xy+x
Defnyddio’r briodwedd ddosbarthu i luosi x â y^{2}+y+1.
xy^{2}+xy+x=2019
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(y^{2}+y+1\right)x=2019
Cyfuno pob term sy'n cynnwys x.
\frac{\left(y^{2}+y+1\right)x}{y^{2}+y+1}=\frac{2019}{y^{2}+y+1}
Rhannu’r ddwy ochr â y^{2}+y+1.
x=\frac{2019}{y^{2}+y+1}
Mae rhannu â y^{2}+y+1 yn dad-wneud lluosi â y^{2}+y+1.
2019=xy^{2}+xy+x
Defnyddio’r briodwedd ddosbarthu i luosi x â y^{2}+y+1.
xy^{2}+xy+x=2019
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(y^{2}+y+1\right)x=2019
Cyfuno pob term sy'n cynnwys x.
\frac{\left(y^{2}+y+1\right)x}{y^{2}+y+1}=\frac{2019}{y^{2}+y+1}
Rhannu’r ddwy ochr â y^{2}+y+1.
x=\frac{2019}{y^{2}+y+1}
Mae rhannu â y^{2}+y+1 yn dad-wneud lluosi â y^{2}+y+1.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}