Datrys ar gyfer h
\left\{\begin{matrix}h=-\frac{2x^{2}-8x+k-5}{x\left(x-4\right)}\text{, }&x\neq 4\text{ and }x\neq 0\\h\in \mathrm{R}\text{, }&\left(x=0\text{ or }x=4\right)\text{ and }k=5\end{matrix}\right.
Datrys ar gyfer k
k=5+8x+4hx-2x^{2}-hx^{2}
Graff
Rhannu
Copïo i clipfwrdd
2x^{3}-10x^{2}+11x-7=2x^{3}+hx^{2}+3x-8x^{2}-4hx-12+k
Defnyddio’r briodwedd ddosbarthu i luosi x-4 â 2x^{2}+hx+3.
2x^{3}+hx^{2}+3x-8x^{2}-4hx-12+k=2x^{3}-10x^{2}+11x-7
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
hx^{2}+3x-8x^{2}-4hx-12+k=2x^{3}-10x^{2}+11x-7-2x^{3}
Tynnu 2x^{3} o'r ddwy ochr.
hx^{2}+3x-8x^{2}-4hx-12+k=-10x^{2}+11x-7
Cyfuno 2x^{3} a -2x^{3} i gael 0.
hx^{2}-8x^{2}-4hx-12+k=-10x^{2}+11x-7-3x
Tynnu 3x o'r ddwy ochr.
hx^{2}-8x^{2}-4hx-12+k=-10x^{2}+8x-7
Cyfuno 11x a -3x i gael 8x.
hx^{2}-4hx-12+k=-10x^{2}+8x-7+8x^{2}
Ychwanegu 8x^{2} at y ddwy ochr.
hx^{2}-4hx-12+k=-2x^{2}+8x-7
Cyfuno -10x^{2} a 8x^{2} i gael -2x^{2}.
hx^{2}-4hx+k=-2x^{2}+8x-7+12
Ychwanegu 12 at y ddwy ochr.
hx^{2}-4hx+k=-2x^{2}+8x+5
Adio -7 a 12 i gael 5.
hx^{2}-4hx=-2x^{2}+8x+5-k
Tynnu k o'r ddwy ochr.
\left(x^{2}-4x\right)h=-2x^{2}+8x+5-k
Cyfuno pob term sy'n cynnwys h.
\left(x^{2}-4x\right)h=5-k+8x-2x^{2}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(x^{2}-4x\right)h}{x^{2}-4x}=\frac{5-k+8x-2x^{2}}{x^{2}-4x}
Rhannu’r ddwy ochr â x^{2}-4x.
h=\frac{5-k+8x-2x^{2}}{x^{2}-4x}
Mae rhannu â x^{2}-4x yn dad-wneud lluosi â x^{2}-4x.
h=\frac{5-k+8x-2x^{2}}{x\left(x-4\right)}
Rhannwch -2x^{2}+8x+5-k â x^{2}-4x.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}