Datrys ar gyfer x (complex solution)
x=\frac{-\sqrt{29}i+1}{2}\approx 0.5-2.692582404i
x=-4
x=\frac{1+\sqrt{29}i}{2}\approx 0.5+2.692582404i
Datrys ar gyfer x
x=-4
Graff
Rhannu
Copïo i clipfwrdd
±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Yn ôl y Theorem Gwraidd Rhesymegol, mae gwreiddiau rhesymegol pob polynomial yn y ffurf \frac{p}{q}, lle mae p yn rhannu'r term cyson 60 ac mae q yn rhannu'r cyfernod arweiniol 2. Rhestru pob ymgeisydd \frac{p}{q}.
x=-4
Dewch o hyd i un isradd o'r fath drwy roi cynnig ar yr holl werthoedd cyfanrif, gan ddechrau o'r lleiaf yn ôl gwerth absoliwt. Os does dim israddau cyfanrif, rhowch gynnig ar ffracsiynau.
2x^{2}-2x+15=0
Yn ôl y theorem Ffactorio, mae x-k yn ffactor o'r polynomial ar gyfer pob gwraidd k. Rhannu 2x^{3}+6x^{2}+7x+60 â x+4 i gael 2x^{2}-2x+15. Datryswch yr hafaliad pan fydd y canlyniad yn hafal i 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Gellir datrys pob hafaliad sydd ar y ffurf ax^{2}+bx+c=0 gan ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rhowch 2 ar gyfer a, -2 ar gyfer b, a 15 ar gyfer c yn y fformiwla cwadratig.
x=\frac{2±\sqrt{-116}}{4}
Gwnewch y gwaith cyfrifo.
x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Datryswch yr hafaliad 2x^{2}-2x+15=0 pan fo ± yn plws a phan fo ± yn minws.
x=-4 x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Rhestrwch yr holl atebion a ganfuwyd.
±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Yn ôl y Theorem Gwraidd Rhesymegol, mae gwreiddiau rhesymegol pob polynomial yn y ffurf \frac{p}{q}, lle mae p yn rhannu'r term cyson 60 ac mae q yn rhannu'r cyfernod arweiniol 2. Rhestru pob ymgeisydd \frac{p}{q}.
x=-4
Dewch o hyd i un isradd o'r fath drwy roi cynnig ar yr holl werthoedd cyfanrif, gan ddechrau o'r lleiaf yn ôl gwerth absoliwt. Os does dim israddau cyfanrif, rhowch gynnig ar ffracsiynau.
2x^{2}-2x+15=0
Yn ôl y theorem Ffactorio, mae x-k yn ffactor o'r polynomial ar gyfer pob gwraidd k. Rhannu 2x^{3}+6x^{2}+7x+60 â x+4 i gael 2x^{2}-2x+15. Datryswch yr hafaliad pan fydd y canlyniad yn hafal i 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Gellir datrys pob hafaliad sydd ar y ffurf ax^{2}+bx+c=0 gan ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rhowch 2 ar gyfer a, -2 ar gyfer b, a 15 ar gyfer c yn y fformiwla cwadratig.
x=\frac{2±\sqrt{-116}}{4}
Gwnewch y gwaith cyfrifo.
x\in \emptyset
Gan nad yw ail isradd rhif negyddol wedi’i ddiffinio mewn maes real, does dim atebion.
x=-4
Rhestrwch yr holl atebion a ganfuwyd.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}