Enrhifo
\frac{7\sqrt{3}}{6}\approx 2.020725942
Rhannu
Copïo i clipfwrdd
\frac{12\times \frac{\sqrt{1}}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{1}{6}} fel rhaniad ail israddau \frac{\sqrt{1}}{\sqrt{6}}.
\frac{12\times \frac{1}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Cyfrifo ail isradd 1 a chael 1.
\frac{12\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Mae'n rhesymoli enwadur \frac{1}{\sqrt{6}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{6}.
\frac{12\times \frac{\sqrt{6}}{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Sgwâr \sqrt{6} yw 6.
\frac{2\sqrt{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Diddymwch y ffactor cyffredin mwyaf 6 yn 12 a 6.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{\sqrt{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{7}{12}} fel rhaniad ail israddau \frac{\sqrt{7}}{\sqrt{12}}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{2\sqrt{3}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Ffactora 12=2^{2}\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 3} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{3}. Cymryd isradd 2^{2}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Mae'n rhesymoli enwadur \frac{\sqrt{7}}{2\sqrt{3}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{3}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Sgwâr \sqrt{3} yw 3.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
I luosi \sqrt{7} a \sqrt{3}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Lluosi 2 a 3 i gael 6.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{20+1}{2}}
Lluosi 10 a 2 i gael 20.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{21}{2}}
Adio 20 a 1 i gael 21.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}}{\sqrt{2}}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{21}{2}} fel rhaniad ail israddau \frac{\sqrt{21}}{\sqrt{2}}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Mae'n rhesymoli enwadur \frac{\sqrt{21}}{\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{2}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{2}
Sgwâr \sqrt{2} yw 2.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
I luosi \sqrt{21} a \sqrt{2}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{2\sqrt{6}\sqrt{21}}{3\times 6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Lluoswch \frac{2\sqrt{6}}{3} â \frac{\sqrt{21}}{6} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{\sqrt{6}\sqrt{21}}{3\times 3}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Canslo 2 yn y rhifiadur a'r enwadur.
\frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2}\times \frac{\sqrt{42}}{2}
Lluoswch \frac{\sqrt{6}\sqrt{21}}{3\times 3} â \frac{1}{2} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{\sqrt{6}\sqrt{21}\sqrt{42}}{3\times 3\times 2\times 2}
Lluoswch \frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2} â \frac{\sqrt{42}}{2} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{\sqrt{6}\sqrt{21}\sqrt{6}\sqrt{7}}{3\times 3\times 2\times 2}
Ffactora 42=6\times 7. Ailysgrifennu ail isradd y lluoswm \sqrt{6\times 7} fel lluoswm ail israddau \sqrt{6}\sqrt{7}.
\frac{6\sqrt{21}\sqrt{7}}{3\times 3\times 2\times 2}
Lluosi \sqrt{6} a \sqrt{6} i gael 6.
\frac{6\sqrt{7}\sqrt{3}\sqrt{7}}{3\times 3\times 2\times 2}
Ffactora 21=7\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{7\times 3} fel lluoswm ail israddau \sqrt{7}\sqrt{3}.
\frac{6\times 7\sqrt{3}}{3\times 3\times 2\times 2}
Lluosi \sqrt{7} a \sqrt{7} i gael 7.
\frac{42\sqrt{3}}{3\times 3\times 2\times 2}
Lluosi 6 a 7 i gael 42.
\frac{42\sqrt{3}}{9\times 2\times 2}
Lluosi 3 a 3 i gael 9.
\frac{42\sqrt{3}}{18\times 2}
Lluosi 9 a 2 i gael 18.
\frac{42\sqrt{3}}{36}
Lluosi 18 a 2 i gael 36.
\frac{7}{6}\sqrt{3}
Rhannu 42\sqrt{3} â 36 i gael \frac{7}{6}\sqrt{3}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}