Datrys ar gyfer x
x=\frac{y^{2}+80y+850}{y+80}
y\neq -80
Datrys ar gyfer y (complex solution)
y=\frac{-\sqrt{x^{2}+160x+3000}+x-80}{2}
y=\frac{\sqrt{x^{2}+160x+3000}+x-80}{2}
Datrys ar gyfer y
y=\frac{-\sqrt{x^{2}+160x+3000}+x-80}{2}
y=\frac{\sqrt{x^{2}+160x+3000}+x-80}{2}\text{, }x\geq 10\sqrt{34}-80\text{ or }x\leq -10\sqrt{34}-80
Graff
Rhannu
Copïo i clipfwrdd
400x+5xy-400y-5y^{2}=4250
Defnyddio’r briodwedd ddosbarthu i luosi x-y â 400+5y.
400x+5xy-5y^{2}=4250+400y
Ychwanegu 400y at y ddwy ochr.
400x+5xy=4250+400y+5y^{2}
Ychwanegu 5y^{2} at y ddwy ochr.
\left(400+5y\right)x=4250+400y+5y^{2}
Cyfuno pob term sy'n cynnwys x.
\left(5y+400\right)x=5y^{2}+400y+4250
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(5y+400\right)x}{5y+400}=\frac{5y^{2}+400y+4250}{5y+400}
Rhannu’r ddwy ochr â 400+5y.
x=\frac{5y^{2}+400y+4250}{5y+400}
Mae rhannu â 400+5y yn dad-wneud lluosi â 400+5y.
x=\frac{y^{2}+80y+850}{y+80}
Rhannwch 4250+400y+5y^{2} â 400+5y.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}