Enrhifo
400\left(p^{2}-q^{2}\right)
Ehangu
400p^{2}-400q^{2}
Rhannu
Copïo i clipfwrdd
625p^{2}-750pq+225q^{2}-\left(15p-25q\right)^{2}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(25p-15q\right)^{2}.
625p^{2}-750pq+225q^{2}-\left(225p^{2}-750pq+625q^{2}\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(15p-25q\right)^{2}.
625p^{2}-750pq+225q^{2}-225p^{2}+750pq-625q^{2}
I ddod o hyd i wrthwyneb 225p^{2}-750pq+625q^{2}, dewch o hyd i wrthwyneb pob term.
400p^{2}-750pq+225q^{2}+750pq-625q^{2}
Cyfuno 625p^{2} a -225p^{2} i gael 400p^{2}.
400p^{2}+225q^{2}-625q^{2}
Cyfuno -750pq a 750pq i gael 0.
400p^{2}-400q^{2}
Cyfuno 225q^{2} a -625q^{2} i gael -400q^{2}.
625p^{2}-750pq+225q^{2}-\left(15p-25q\right)^{2}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(25p-15q\right)^{2}.
625p^{2}-750pq+225q^{2}-\left(225p^{2}-750pq+625q^{2}\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(15p-25q\right)^{2}.
625p^{2}-750pq+225q^{2}-225p^{2}+750pq-625q^{2}
I ddod o hyd i wrthwyneb 225p^{2}-750pq+625q^{2}, dewch o hyd i wrthwyneb pob term.
400p^{2}-750pq+225q^{2}+750pq-625q^{2}
Cyfuno 625p^{2} a -225p^{2} i gael 400p^{2}.
400p^{2}+225q^{2}-625q^{2}
Cyfuno -750pq a 750pq i gael 0.
400p^{2}-400q^{2}
Cyfuno 225q^{2} a -625q^{2} i gael -400q^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}