Datrys ar gyfer x
x = \frac{\sqrt{10} + 1}{2} \approx 2.08113883
x=\frac{1-\sqrt{10}}{2}\approx -1.08113883
Graff
Rhannu
Copïo i clipfwrdd
\left(2x-1\right)^{2}-9+9=1+9
Adio 9 at ddwy ochr yr hafaliad.
\left(2x-1\right)^{2}=1+9
Mae tynnu 9 o’i hun yn gadael 0.
\left(2x-1\right)^{2}=10
Adio 1 at 9.
2x-1=\sqrt{10} 2x-1=-\sqrt{10}
Cymryd isradd dwy ochr yr hafaliad.
2x-1-\left(-1\right)=\sqrt{10}-\left(-1\right) 2x-1-\left(-1\right)=-\sqrt{10}-\left(-1\right)
Adio 1 at ddwy ochr yr hafaliad.
2x=\sqrt{10}-\left(-1\right) 2x=-\sqrt{10}-\left(-1\right)
Mae tynnu -1 o’i hun yn gadael 0.
2x=\sqrt{10}+1
Tynnu -1 o \sqrt{10}.
2x=1-\sqrt{10}
Tynnu -1 o -\sqrt{10}.
\frac{2x}{2}=\frac{\sqrt{10}+1}{2} \frac{2x}{2}=\frac{1-\sqrt{10}}{2}
Rhannu’r ddwy ochr â 2.
x=\frac{\sqrt{10}+1}{2} x=\frac{1-\sqrt{10}}{2}
Mae rhannu â 2 yn dad-wneud lluosi â 2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}