Enrhifo
9-2\sqrt{2}\approx 6.171572875
Cwis
Arithmetic
( 2 \sqrt { 2 } - 1 ) ^ { 2 } - ( 1 + \sqrt { 3 } ) \times ( \sqrt { 2 } - \sqrt { 6 } )
Rhannu
Copïo i clipfwrdd
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Sgwâr \sqrt{2} yw 2.
8-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Lluosi 4 a 2 i gael 8.
9-4\sqrt{2}-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Adio 8 a 1 i gael 9.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{6}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}\right)
Defnyddio’r briodwedd ddosbarthu i luosi 1+\sqrt{3} â \sqrt{2}-\sqrt{6}.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{3}\sqrt{6}\right)
I luosi \sqrt{3} a \sqrt{2}, dylid lluosi'r rhifau dan yr ail isradd.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{3}\sqrt{6}\right)
Cyfuno -\sqrt{6} a \sqrt{6} i gael 0.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{3}\sqrt{3}\sqrt{2}\right)
Ffactora 6=3\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{3\times 2} fel lluoswm ail israddau \sqrt{3}\sqrt{2}.
9-4\sqrt{2}-\left(\sqrt{2}-3\sqrt{2}\right)
Lluosi \sqrt{3} a \sqrt{3} i gael 3.
9-4\sqrt{2}-\left(-2\sqrt{2}\right)
Cyfuno \sqrt{2} a -3\sqrt{2} i gael -2\sqrt{2}.
9-4\sqrt{2}+2\sqrt{2}
Gwrthwyneb -2\sqrt{2} yw 2\sqrt{2}.
9-2\sqrt{2}
Cyfuno -4\sqrt{2} a 2\sqrt{2} i gael -2\sqrt{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}