Enrhifo
\sqrt{5}\approx 2.236067977
Ehangu
\sqrt{5} = 2.236067977
Rhannu
Copïo i clipfwrdd
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\left(\frac{\sqrt{5}-1}{2}\right)^{2}
I godi \frac{\sqrt{5}+1}{2} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}-1\right)^{2}}{2^{2}}
I godi \frac{\sqrt{5}-1}{2} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1}{2^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{5}-1\right)^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{5-2\sqrt{5}+1}{2^{2}}
Sgwâr \sqrt{5} yw 5.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}
Adio 5 a 1 i gael 6.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Ehangu 2^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
Gan fod gan \frac{\left(\sqrt{5}+1\right)^{2}}{4} a \frac{6-2\sqrt{5}}{4} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}}{4}
Gwnewch y gwaith lluosi yn \left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right).
\frac{4\sqrt{5}}{4}
Gwnewch y gwaith cyfrifo yn \left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}.
\sqrt{5}
Canslo 4 a 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\left(\frac{\sqrt{5}-1}{2}\right)^{2}
I godi \frac{\sqrt{5}+1}{2} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}-1\right)^{2}}{2^{2}}
I godi \frac{\sqrt{5}-1}{2} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1}{2^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{5}-1\right)^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{5-2\sqrt{5}+1}{2^{2}}
Sgwâr \sqrt{5} yw 5.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}
Adio 5 a 1 i gael 6.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Ehangu 2^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
Gan fod gan \frac{\left(\sqrt{5}+1\right)^{2}}{4} a \frac{6-2\sqrt{5}}{4} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}}{4}
Gwnewch y gwaith lluosi yn \left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right).
\frac{4\sqrt{5}}{4}
Gwnewch y gwaith cyfrifo yn \left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}.
\sqrt{5}
Canslo 4 a 4.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}