Gwireddu
ffug
Rhannu
Copïo i clipfwrdd
\frac{\left(-1+\sqrt{-3}\right)^{3}}{2^{3}}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{3}=2
I godi \frac{-1+\sqrt{-3}}{2} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(-1+\sqrt{-3}\right)^{3}}{2^{3}}+\frac{\left(-1-\sqrt{-3}\right)^{3}}{2^{3}}=2
I godi \frac{-1-\sqrt{-3}}{2} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(-1+\sqrt{-3}\right)^{3}+\left(-1-\sqrt{-3}\right)^{3}}{2^{3}}=2
Gan fod gan \frac{\left(-1+\sqrt{-3}\right)^{3}}{2^{3}} a \frac{\left(-1-\sqrt{-3}\right)^{3}}{2^{3}} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{-1+3\sqrt{-3}-3\left(\sqrt{-3}\right)^{2}+\left(\sqrt{-3}\right)^{3}+\left(-1-\sqrt{-3}\right)^{3}}{2^{3}}=2
Defnyddio'r theorem binomaidd \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} i ehangu'r \left(-1+\sqrt{-3}\right)^{3}.
\frac{-1+3\sqrt{-3}-3\left(-3\right)+\left(\sqrt{-3}\right)^{3}+\left(-1-\sqrt{-3}\right)^{3}}{2^{3}}=2
Cyfrifo \sqrt{-3} i bŵer 2 a chael -3.
\frac{-1+3\sqrt{-3}+9+\left(\sqrt{-3}\right)^{3}+\left(-1-\sqrt{-3}\right)^{3}}{2^{3}}=2
Lluosi -3 a -3 i gael 9.
\frac{8+3\sqrt{-3}+\left(\sqrt{-3}\right)^{3}+\left(-1-\sqrt{-3}\right)^{3}}{2^{3}}=2
Adio -1 a 9 i gael 8.
\frac{8+3\sqrt{-3}+\left(\sqrt{-3}\right)^{3}-1-3\sqrt{-3}-3\left(\sqrt{-3}\right)^{2}-\left(\sqrt{-3}\right)^{3}}{2^{3}}=2
Defnyddio'r theorem binomaidd \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} i ehangu'r \left(-1-\sqrt{-3}\right)^{3}.
\frac{8+3\sqrt{-3}+\left(\sqrt{-3}\right)^{3}-1-3\sqrt{-3}-3\left(-3\right)-\left(\sqrt{-3}\right)^{3}}{2^{3}}=2
Cyfrifo \sqrt{-3} i bŵer 2 a chael -3.
\frac{8+3\sqrt{-3}+\left(\sqrt{-3}\right)^{3}-1-3\sqrt{-3}+9-\left(\sqrt{-3}\right)^{3}}{2^{3}}=2
Lluosi -3 a -3 i gael 9.
\frac{8+3\sqrt{-3}+\left(\sqrt{-3}\right)^{3}+8-3\sqrt{-3}-\left(\sqrt{-3}\right)^{3}}{2^{3}}=2
Adio -1 a 9 i gael 8.
\frac{16+3\sqrt{-3}+\left(\sqrt{-3}\right)^{3}-3\sqrt{-3}-\left(\sqrt{-3}\right)^{3}}{2^{3}}=2
Adio 8 a 8 i gael 16.
\frac{16+\left(\sqrt{-3}\right)^{3}-\left(\sqrt{-3}\right)^{3}}{2^{3}}=2
Cyfuno 3\sqrt{-3} a -3\sqrt{-3} i gael 0.
\frac{16}{2^{3}}=2
Cyfuno \left(\sqrt{-3}\right)^{3} a -\left(\sqrt{-3}\right)^{3} i gael 0.
\frac{16}{8}=2
Cyfrifo 2 i bŵer 3 a chael 8.
2=2
Rhannu 16 â 8 i gael 2.
\text{true}
Cymharu 2 gyda 2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}