Enrhifo
\frac{3\sqrt{14}}{55}\approx 0.204090403
Rhannu
Copïo i clipfwrdd
\frac{\sqrt{\frac{5+3}{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Lluosi 1 a 5 i gael 5.
\frac{\sqrt{\frac{8}{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Adio 5 a 3 i gael 8.
\frac{\frac{\sqrt{8}}{\sqrt{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{8}{5}} fel rhaniad ail israddau \frac{\sqrt{8}}{\sqrt{5}}.
\frac{\frac{2\sqrt{2}}{\sqrt{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Ffactora 8=2^{2}\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 2} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{2}. Cymryd isradd 2^{2}.
\frac{\frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Mae'n rhesymoli enwadur \frac{2\sqrt{2}}{\sqrt{5}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{5}.
\frac{\frac{2\sqrt{2}\sqrt{5}}{5}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Sgwâr \sqrt{5} yw 5.
\frac{\frac{2\sqrt{10}}{5}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
I luosi \sqrt{2} a \sqrt{5}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{2\sqrt{10}}{5\times 22}\sqrt{\frac{1}{5}}\sqrt{63}
Mynegwch \frac{\frac{2\sqrt{10}}{5}}{22} fel ffracsiwn unigol.
\frac{\sqrt{10}}{5\times 11}\sqrt{\frac{1}{5}}\sqrt{63}
Canslo 2 yn y rhifiadur a'r enwadur.
\frac{\sqrt{10}}{55}\sqrt{\frac{1}{5}}\sqrt{63}
Lluosi 5 a 11 i gael 55.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{1}}{\sqrt{5}}\sqrt{63}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{1}{5}} fel rhaniad ail israddau \frac{\sqrt{1}}{\sqrt{5}}.
\frac{\sqrt{10}}{55}\times \frac{1}{\sqrt{5}}\sqrt{63}
Cyfrifo ail isradd 1 a chael 1.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{63}
Mae'n rhesymoli enwadur \frac{1}{\sqrt{5}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{5}.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{5}\sqrt{63}
Sgwâr \sqrt{5} yw 5.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{5}\times 3\sqrt{7}
Ffactora 63=3^{2}\times 7. Ailysgrifennu ail isradd y lluoswm \sqrt{3^{2}\times 7} fel lluoswm ail israddau \sqrt{3^{2}}\sqrt{7}. Cymryd isradd 3^{2}.
\frac{\sqrt{10}\sqrt{5}}{55\times 5}\times 3\sqrt{7}
Lluoswch \frac{\sqrt{10}}{55} â \frac{\sqrt{5}}{5} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{\sqrt{10}\sqrt{5}\times 3}{55\times 5}\sqrt{7}
Mynegwch \frac{\sqrt{10}\sqrt{5}}{55\times 5}\times 3 fel ffracsiwn unigol.
\frac{\sqrt{10}\sqrt{5}\times 3\sqrt{7}}{55\times 5}
Mynegwch \frac{\sqrt{10}\sqrt{5}\times 3}{55\times 5}\sqrt{7} fel ffracsiwn unigol.
\frac{\sqrt{5}\sqrt{2}\sqrt{5}\times 3\sqrt{7}}{55\times 5}
Ffactora 10=5\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{5\times 2} fel lluoswm ail israddau \sqrt{5}\sqrt{2}.
\frac{5\sqrt{2}\times 3\sqrt{7}}{55\times 5}
Lluosi \sqrt{5} a \sqrt{5} i gael 5.
\frac{15\sqrt{2}\sqrt{7}}{55\times 5}
Lluosi 5 a 3 i gael 15.
\frac{15\sqrt{14}}{55\times 5}
I luosi \sqrt{2} a \sqrt{7}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{15\sqrt{14}}{275}
Lluosi 55 a 5 i gael 275.
\frac{3}{55}\sqrt{14}
Rhannu 15\sqrt{14} â 275 i gael \frac{3}{55}\sqrt{14}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}