Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

\left(\sqrt{-25+10x}\right)^{2}=x^{2}
Sgwariwch ddwy ochr yr hafaliad.
-25+10x=x^{2}
Cyfrifo \sqrt{-25+10x} i bŵer 2 a chael -25+10x.
-25+10x-x^{2}=0
Tynnu x^{2} o'r ddwy ochr.
-x^{2}+10x-25=0
Ad-drefnu'r polynomial i’w roi yn y ffurf safonol. Rhowch y termau yn y drefn o'r pŵer uchaf i'r isaf.
a+b=10 ab=-\left(-25\right)=25
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel -x^{2}+ax+bx-25. I ddod o hyd i a a b, gosodwch system i'w datrys.
1,25 5,5
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn bositif, mae a a b ill dau yn bositif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch 25.
1+25=26 5+5=10
Cyfrifo'r swm ar gyfer pob pâr.
a=5 b=5
Yr ateb yw'r pâr sy'n rhoi'r swm 10.
\left(-x^{2}+5x\right)+\left(5x-25\right)
Ailysgrifennwch -x^{2}+10x-25 fel \left(-x^{2}+5x\right)+\left(5x-25\right).
-x\left(x-5\right)+5\left(x-5\right)
Ni ddylech ffactorio -x yn y cyntaf a 5 yn yr ail grŵp.
\left(x-5\right)\left(-x+5\right)
Ffactoriwch y term cyffredin x-5 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=5 x=5
I ddod o hyd i atebion hafaliad, datryswch x-5=0 a -x+5=0.
\sqrt{-25+10\times 5}=5
Amnewid 5 am x yn yr hafaliad \sqrt{-25+10x}=x.
5=5
Symleiddio. Mae'r gwerth x=5 yn bodloni'r hafaliad.
\sqrt{-25+10\times 5}=5
Amnewid 5 am x yn yr hafaliad \sqrt{-25+10x}=x.
5=5
Symleiddio. Mae'r gwerth x=5 yn bodloni'r hafaliad.
x=5 x=5
Rhestr o'r holl atebion \sqrt{10x-25}=x.