Neidio i'r prif gynnwys
Datrys ar gyfer x (complex solution)
Tick mark Image
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
Defnyddio’r briodwedd ddosbarthu i luosi -y_{1} â x_{1}+g.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
Defnyddio’r briodwedd ddosbarthu i luosi x-x_{1} â y_{1}+f.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
Ychwanegu x_{1}y_{1} at y ddwy ochr.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
Ychwanegu x_{1}f at y ddwy ochr.
xy_{1}+xf=-y_{1}g+x_{1}f
Cyfuno -y_{1}x_{1} a x_{1}y_{1} i gael 0.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
Cyfuno pob term sy'n cynnwys x.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Rhannu’r ddwy ochr â y_{1}+f.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Mae rhannu â y_{1}+f yn dad-wneud lluosi â y_{1}+f.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
Defnyddio’r briodwedd ddosbarthu i luosi -y_{1} â x_{1}+g.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
Defnyddio’r briodwedd ddosbarthu i luosi x-x_{1} â y_{1}+f.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
Ychwanegu x_{1}y_{1} at y ddwy ochr.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
Ychwanegu x_{1}f at y ddwy ochr.
xy_{1}+xf=-y_{1}g+x_{1}f
Cyfuno -y_{1}x_{1} a x_{1}y_{1} i gael 0.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
Cyfuno pob term sy'n cynnwys x.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Rhannu’r ddwy ochr â y_{1}+f.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Mae rhannu â y_{1}+f yn dad-wneud lluosi â y_{1}+f.