Datrys ar gyfer x (complex solution)
\left\{\begin{matrix}x=-\frac{gy_{1}-fx_{1}}{y_{1}+f}\text{, }&y_{1}\neq -f\\x\in \mathrm{C}\text{, }&\left(y_{1}=0\text{ and }f=0\right)\text{ or }\left(x_{1}=-g\text{ and }y_{1}=-f\right)\end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}x=-\frac{gy_{1}-fx_{1}}{y_{1}+f}\text{, }&y_{1}\neq -f\\x\in \mathrm{R}\text{, }&\left(y_{1}=0\text{ and }f=0\right)\text{ or }\left(x_{1}=-g\text{ and }y_{1}=-f\right)\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
Defnyddio’r briodwedd ddosbarthu i luosi -y_{1} â x_{1}+g.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
Defnyddio’r briodwedd ddosbarthu i luosi x-x_{1} â y_{1}+f.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
Ychwanegu x_{1}y_{1} at y ddwy ochr.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
Ychwanegu x_{1}f at y ddwy ochr.
xy_{1}+xf=-y_{1}g+x_{1}f
Cyfuno -y_{1}x_{1} a x_{1}y_{1} i gael 0.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
Cyfuno pob term sy'n cynnwys x.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Rhannu’r ddwy ochr â y_{1}+f.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Mae rhannu â y_{1}+f yn dad-wneud lluosi â y_{1}+f.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
Defnyddio’r briodwedd ddosbarthu i luosi -y_{1} â x_{1}+g.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
Defnyddio’r briodwedd ddosbarthu i luosi x-x_{1} â y_{1}+f.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
Ychwanegu x_{1}y_{1} at y ddwy ochr.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
Ychwanegu x_{1}f at y ddwy ochr.
xy_{1}+xf=-y_{1}g+x_{1}f
Cyfuno -y_{1}x_{1} a x_{1}y_{1} i gael 0.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
Cyfuno pob term sy'n cynnwys x.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Rhannu’r ddwy ochr â y_{1}+f.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Mae rhannu â y_{1}+f yn dad-wneud lluosi â y_{1}+f.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}