Datrys ar gyfer x, y
x=4
y=-3
Graff
Rhannu
Copïo i clipfwrdd
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
\frac{1}{2}x+\frac{1}{3}y=1
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
\frac{1}{2}x=-\frac{1}{3}y+1
Tynnu \frac{y}{3} o ddwy ochr yr hafaliad.
x=2\left(-\frac{1}{3}y+1\right)
Lluosi’r ddwy ochr â 2.
x=-\frac{2}{3}y+2
Lluoswch 2 â -\frac{y}{3}+1.
-\frac{2}{3}y+2+y=1
Amnewid -\frac{2y}{3}+2 am x yn yr hafaliad arall, x+y=1.
\frac{1}{3}y+2=1
Adio -\frac{2y}{3} at y.
\frac{1}{3}y=-1
Tynnu 2 o ddwy ochr yr hafaliad.
y=-3
Lluosi’r ddwy ochr â 3.
x=-\frac{2}{3}\left(-3\right)+2
Cyfnewidiwch -3 am y yn x=-\frac{2}{3}y+2. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=2+2
Lluoswch -\frac{2}{3} â -3.
x=4
Adio 2 at 2.
x=4,y=-3
Mae’r system wedi’i datrys nawr.
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{2}-\frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}\\-\frac{1}{\frac{1}{2}-\frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}-\frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6&-2\\-6&3\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6-2\\-6+3\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Gwneud y symiau.
x=4,y=-3
Echdynnu yr elfennau matrics x a y.
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
\frac{1}{2}x+\frac{1}{3}y=1,\frac{1}{2}x+\frac{1}{2}y=\frac{1}{2}
I wneud \frac{x}{2} a x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 1 a holl dermau naill ochr yr ail â \frac{1}{2}.
\frac{1}{2}x-\frac{1}{2}x+\frac{1}{3}y-\frac{1}{2}y=1-\frac{1}{2}
Tynnwch \frac{1}{2}x+\frac{1}{2}y=\frac{1}{2} o \frac{1}{2}x+\frac{1}{3}y=1 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
\frac{1}{3}y-\frac{1}{2}y=1-\frac{1}{2}
Adio \frac{x}{2} at -\frac{x}{2}. Mae'r termau \frac{x}{2} a -\frac{x}{2} yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-\frac{1}{6}y=1-\frac{1}{2}
Adio \frac{y}{3} at -\frac{y}{2}.
-\frac{1}{6}y=\frac{1}{2}
Adio 1 at -\frac{1}{2}.
y=-3
Lluosi’r ddwy ochr â -6.
x-3=1
Cyfnewidiwch -3 am y yn x+y=1. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=4
Adio 3 at ddwy ochr yr hafaliad.
x=4,y=-3
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}