Datrys ar gyfer x, y
\left\{\begin{matrix}x=-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}\text{, }y=\frac{2\left(-\sqrt{ab\left(4a+b-36\right)}+3b\right)}{4a+b}\text{; }x=\frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}\text{, }y=\frac{2\left(\sqrt{ab\left(4a+b-36\right)}+3b\right)}{4a+b}\text{, }&\left(a\geq -\frac{b}{4}+9\text{ and }a>0\text{ and }b>0\right)\text{ or }\left(a=-\frac{b}{4}+9\text{ and }b\neq 0\text{ and }b<36\right)\text{ or }\left(a\neq -\frac{b}{4}\text{ and }a\leq -\frac{b}{4}+9\text{ and }b<0\text{ and }a>0\right)\text{ or }\left(a=-\frac{b}{4}+9\text{ and }b>0\text{ and }b\neq 36\right)\text{ or }\left(a\neq -\frac{b}{4}\text{ and }a\leq -\frac{b}{4}+9\text{ and }a<0\text{ and }b>0\right)\\x=\frac{b-36}{24}\text{, }y=\frac{b+36}{12}\text{, }&a=-\frac{b}{4}\text{ and }b\neq 0\end{matrix}\right.
Datrys ar gyfer x, y (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}\text{, }y=\frac{2\left(-\sqrt{ab\left(4a+b-36\right)}+3b\right)}{4a+b}\text{; }x=\frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}\text{, }y=\frac{2\left(\sqrt{ab\left(4a+b-36\right)}+3b\right)}{4a+b}\text{, }&a\neq -\frac{b}{4}\text{ and }a\neq 0\text{ and }b\neq 0\\x=\frac{b-36}{24}\text{, }y=\frac{b+36}{12}\text{, }&a=-\frac{b}{4}\text{ and }b\neq 0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
bx^{2}+ay^{2}=ab
Ystyriwch yr hafaliad cyntaf. Lluoswch ddwy ochr yr hafaliad wrth ab, lluoswm cyffredin lleiaf a,b.
y-2x=6
Ystyriwch yr ail hafaliad. Tynnu 2x o'r ddwy ochr.
y-2x=6,bx^{2}+ay^{2}=ab
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
y-2x=6
Datryswch y-2x=6 am y drwy ynysu y ar ochr chwith yr arwydd hafal.
y=2x+6
Tynnu -2x o ddwy ochr yr hafaliad.
bx^{2}+a\left(2x+6\right)^{2}=ab
Amnewid 2x+6 am y yn yr hafaliad arall, bx^{2}+ay^{2}=ab.
bx^{2}+a\left(4x^{2}+24x+36\right)=ab
Sgwâr 2x+6.
bx^{2}+4ax^{2}+24ax+36a=ab
Lluoswch a â 4x^{2}+24x+36.
\left(4a+b\right)x^{2}+24ax+36a=ab
Adio bx^{2} at 4ax^{2}.
\left(4a+b\right)x^{2}+24ax+36a-ab=0
Tynnu ab o ddwy ochr yr hafaliad.
x=\frac{-24a±\sqrt{\left(24a\right)^{2}-4\left(4a+b\right)a\left(36-b\right)}}{2\left(4a+b\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch b+a\times 2^{2} am a, a\times 6\times 2\times 2 am b, a a\left(36-b\right) am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24a±\sqrt{576a^{2}-4\left(4a+b\right)a\left(36-b\right)}}{2\left(4a+b\right)}
Sgwâr a\times 6\times 2\times 2.
x=\frac{-24a±\sqrt{576a^{2}+\left(-16a-4b\right)a\left(36-b\right)}}{2\left(4a+b\right)}
Lluoswch -4 â b+a\times 2^{2}.
x=\frac{-24a±\sqrt{576a^{2}-4a\left(36-b\right)\left(4a+b\right)}}{2\left(4a+b\right)}
Lluoswch -4b-16a â a\left(36-b\right).
x=\frac{-24a±\sqrt{4ab\left(4a+b-36\right)}}{2\left(4a+b\right)}
Adio 576a^{2} at -4\left(b+4a\right)a\left(36-b\right).
x=\frac{-24a±2\sqrt{ab\left(4a+b-36\right)}}{2\left(4a+b\right)}
Cymryd isradd 4ab\left(-36+4a+b\right).
x=\frac{-24a±2\sqrt{ab\left(4a+b-36\right)}}{8a+2b}
Lluoswch 2 â b+a\times 2^{2}.
x=\frac{2\sqrt{ab\left(4a+b-36\right)}-24a}{8a+2b}
Datryswch yr hafaliad x=\frac{-24a±2\sqrt{ab\left(4a+b-36\right)}}{8a+2b} pan fydd ± yn plws. Adio -24a at 2\sqrt{ab\left(-36+4a+b\right)}.
x=\frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}
Rhannwch -24a+2\sqrt{ab\left(-36+4a+b\right)} â 2b+8a.
x=\frac{-2\sqrt{ab\left(4a+b-36\right)}-24a}{8a+2b}
Datryswch yr hafaliad x=\frac{-24a±2\sqrt{ab\left(4a+b-36\right)}}{8a+2b} pan fydd ± yn minws. Tynnu 2\sqrt{ab\left(-36+4a+b\right)} o -24a.
x=-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}
Rhannwch -24a-2\sqrt{ab\left(-36+4a+b\right)} â 2b+8a.
y=2\times \frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}+6
Mae dau ateb ar gyfer x: \frac{-12a+\sqrt{ab\left(-36+4a+b\right)}}{b+4a} a -\frac{12a+\sqrt{ab\left(-36+4a+b\right)}}{b+4a}. Amnewidiwch \frac{-12a+\sqrt{ab\left(-36+4a+b\right)}}{b+4a} am x yn yr hafaliad y=2x+6 i ddod o hyd i'r ateb cyfatebol ar gyfer y sy'n bodloni'r ddau hafaliad.
y=2\left(-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}\right)+6
Nawr, amnewidiwch -\frac{12a+\sqrt{ab\left(-36+4a+b\right)}}{b+4a} am x yn yr hafaliad y=2x+6 a’i ddatrys i ganfod yr ateb cyfatebol ar gyfer y sy'n bodloni'r ddau hafaliad.
y=2\times \frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}+6,x=\frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}\text{ or }y=2\left(-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}\right)+6,x=-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}