\left\{ \begin{array} { l } { x + 2 y = 0 } \\ { 5 x + 2 y = 3 } \end{array} \right.
Datrys ar gyfer x, y
x=\frac{3}{4}=0.75
y=-\frac{3}{8}=-0.375
Graff
Rhannu
Copïo i clipfwrdd
x+2y=0,5x+2y=3
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
x+2y=0
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
x=-2y
Tynnu 2y o ddwy ochr yr hafaliad.
5\left(-2\right)y+2y=3
Amnewid -2y am x yn yr hafaliad arall, 5x+2y=3.
-10y+2y=3
Lluoswch 5 â -2y.
-8y=3
Adio -10y at 2y.
y=-\frac{3}{8}
Rhannu’r ddwy ochr â -8.
x=-2\left(-\frac{3}{8}\right)
Cyfnewidiwch -\frac{3}{8} am y yn x=-2y. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{3}{4}
Lluoswch -2 â -\frac{3}{8}.
x=\frac{3}{4},y=-\frac{3}{8}
Mae’r system wedi’i datrys nawr.
x+2y=0,5x+2y=3
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}1&2\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 5}&-\frac{2}{2-2\times 5}\\-\frac{5}{2-2\times 5}&\frac{1}{2-2\times 5}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3\\-\frac{1}{8}\times 3\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\-\frac{3}{8}\end{matrix}\right)
Gwneud y symiau.
x=\frac{3}{4},y=-\frac{3}{8}
Echdynnu yr elfennau matrics x a y.
x+2y=0,5x+2y=3
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
x-5x+2y-2y=-3
Tynnwch 5x+2y=3 o x+2y=0 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
x-5x=-3
Adio 2y at -2y. Mae'r termau 2y a -2y yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-4x=-3
Adio x at -5x.
x=\frac{3}{4}
Rhannu’r ddwy ochr â -4.
5\times \frac{3}{4}+2y=3
Cyfnewidiwch \frac{3}{4} am x yn 5x+2y=3. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer y yn uniongyrchol.
\frac{15}{4}+2y=3
Lluoswch 5 â \frac{3}{4}.
2y=-\frac{3}{4}
Tynnu \frac{15}{4} o ddwy ochr yr hafaliad.
y=-\frac{3}{8}
Rhannu’r ddwy ochr â 2.
x=\frac{3}{4},y=-\frac{3}{8}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}