\left\{ \begin{array} { l } { 5 x + 2 y = 6 } \\ { 2 x + 5 y = 8 } \end{array} \right.
Datrys ar gyfer x, y
x=\frac{2}{3}\approx 0.666666667
y = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graff
Rhannu
Copïo i clipfwrdd
5x+2y=6,2x+5y=8
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
5x+2y=6
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
5x=-2y+6
Tynnu 2y o ddwy ochr yr hafaliad.
x=\frac{1}{5}\left(-2y+6\right)
Rhannu’r ddwy ochr â 5.
x=-\frac{2}{5}y+\frac{6}{5}
Lluoswch \frac{1}{5} â -2y+6.
2\left(-\frac{2}{5}y+\frac{6}{5}\right)+5y=8
Amnewid \frac{-2y+6}{5} am x yn yr hafaliad arall, 2x+5y=8.
-\frac{4}{5}y+\frac{12}{5}+5y=8
Lluoswch 2 â \frac{-2y+6}{5}.
\frac{21}{5}y+\frac{12}{5}=8
Adio -\frac{4y}{5} at 5y.
\frac{21}{5}y=\frac{28}{5}
Tynnu \frac{12}{5} o ddwy ochr yr hafaliad.
y=\frac{4}{3}
Rhannu dwy ochr hafaliad â \frac{21}{5}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=-\frac{2}{5}\times \frac{4}{3}+\frac{6}{5}
Cyfnewidiwch \frac{4}{3} am y yn x=-\frac{2}{5}y+\frac{6}{5}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-\frac{8}{15}+\frac{6}{5}
Lluoswch -\frac{2}{5} â \frac{4}{3} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur. Yna, dylech leihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{2}{3}
Adio \frac{6}{5} at -\frac{8}{15} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{2}{3},y=\frac{4}{3}
Mae’r system wedi’i datrys nawr.
5x+2y=6,2x+5y=8
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}5&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}5&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}5&2\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-2\times 2}&-\frac{2}{5\times 5-2\times 2}\\-\frac{2}{5\times 5-2\times 2}&\frac{5}{5\times 5-2\times 2}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&-\frac{2}{21}\\-\frac{2}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\times 6-\frac{2}{21}\times 8\\-\frac{2}{21}\times 6+\frac{5}{21}\times 8\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\\\frac{4}{3}\end{matrix}\right)
Gwneud y symiau.
x=\frac{2}{3},y=\frac{4}{3}
Echdynnu yr elfennau matrics x a y.
5x+2y=6,2x+5y=8
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
2\times 5x+2\times 2y=2\times 6,5\times 2x+5\times 5y=5\times 8
I wneud 5x a 2x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 2 a holl dermau naill ochr yr ail â 5.
10x+4y=12,10x+25y=40
Symleiddio.
10x-10x+4y-25y=12-40
Tynnwch 10x+25y=40 o 10x+4y=12 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
4y-25y=12-40
Adio 10x at -10x. Mae'r termau 10x a -10x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-21y=12-40
Adio 4y at -25y.
-21y=-28
Adio 12 at -40.
y=\frac{4}{3}
Rhannu’r ddwy ochr â -21.
2x+5\times \frac{4}{3}=8
Cyfnewidiwch \frac{4}{3} am y yn 2x+5y=8. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
2x+\frac{20}{3}=8
Lluoswch 5 â \frac{4}{3}.
2x=\frac{4}{3}
Tynnu \frac{20}{3} o ddwy ochr yr hafaliad.
x=\frac{2}{3}
Rhannu’r ddwy ochr â 2.
x=\frac{2}{3},y=\frac{4}{3}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}