Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

2x-y=5,4x+6y=24
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x-y=5
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x=y+5
Adio y at ddwy ochr yr hafaliad.
x=\frac{1}{2}\left(y+5\right)
Rhannu’r ddwy ochr â 2.
x=\frac{1}{2}y+\frac{5}{2}
Lluoswch \frac{1}{2} â y+5.
4\left(\frac{1}{2}y+\frac{5}{2}\right)+6y=24
Amnewid \frac{5+y}{2} am x yn yr hafaliad arall, 4x+6y=24.
2y+10+6y=24
Lluoswch 4 â \frac{5+y}{2}.
8y+10=24
Adio 2y at 6y.
8y=14
Tynnu 10 o ddwy ochr yr hafaliad.
y=\frac{7}{4}
Rhannu’r ddwy ochr â 8.
x=\frac{1}{2}\times \frac{7}{4}+\frac{5}{2}
Cyfnewidiwch \frac{7}{4} am y yn x=\frac{1}{2}y+\frac{5}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{7}{8}+\frac{5}{2}
Lluoswch \frac{1}{2} â \frac{7}{4} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur. Yna, dylech leihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{27}{8}
Adio \frac{5}{2} at \frac{7}{8} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{27}{8},y=\frac{7}{4}
Mae’r system wedi’i datrys nawr.
2x-y=5,4x+6y=24
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&-1\\4&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-\left(-4\right)}&-\frac{-1}{2\times 6-\left(-4\right)}\\-\frac{4}{2\times 6-\left(-4\right)}&\frac{2}{2\times 6-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{1}{16}\\-\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 5+\frac{1}{16}\times 24\\-\frac{1}{4}\times 5+\frac{1}{8}\times 24\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{8}\\\frac{7}{4}\end{matrix}\right)
Gwneud y symiau.
x=\frac{27}{8},y=\frac{7}{4}
Echdynnu yr elfennau matrics x a y.
2x-y=5,4x+6y=24
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
4\times 2x+4\left(-1\right)y=4\times 5,2\times 4x+2\times 6y=2\times 24
I wneud 2x a 4x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 4 a holl dermau naill ochr yr ail â 2.
8x-4y=20,8x+12y=48
Symleiddio.
8x-8x-4y-12y=20-48
Tynnwch 8x+12y=48 o 8x-4y=20 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-4y-12y=20-48
Adio 8x at -8x. Mae'r termau 8x a -8x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-16y=20-48
Adio -4y at -12y.
-16y=-28
Adio 20 at -48.
y=\frac{7}{4}
Rhannu’r ddwy ochr â -16.
4x+6\times \frac{7}{4}=24
Cyfnewidiwch \frac{7}{4} am y yn 4x+6y=24. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
4x+\frac{21}{2}=24
Lluoswch 6 â \frac{7}{4}.
4x=\frac{27}{2}
Tynnu \frac{21}{2} o ddwy ochr yr hafaliad.
x=\frac{27}{8}
Rhannu’r ddwy ochr â 4.
x=\frac{27}{8},y=\frac{7}{4}
Mae’r system wedi’i datrys nawr.