Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

2x+y-5=0,x-2y=0
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x+y-5=0
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x+y=5
Adio 5 at ddwy ochr yr hafaliad.
2x=-y+5
Tynnu y o ddwy ochr yr hafaliad.
x=\frac{1}{2}\left(-y+5\right)
Rhannu’r ddwy ochr â 2.
x=-\frac{1}{2}y+\frac{5}{2}
Lluoswch \frac{1}{2} â -y+5.
-\frac{1}{2}y+\frac{5}{2}-2y=0
Amnewid \frac{-y+5}{2} am x yn yr hafaliad arall, x-2y=0.
-\frac{5}{2}y+\frac{5}{2}=0
Adio -\frac{y}{2} at -2y.
-\frac{5}{2}y=-\frac{5}{2}
Tynnu \frac{5}{2} o ddwy ochr yr hafaliad.
y=1
Rhannu dwy ochr hafaliad â -\frac{5}{2}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=\frac{-1+5}{2}
Cyfnewidiwch 1 am y yn x=-\frac{1}{2}y+\frac{5}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=2
Adio \frac{5}{2} at -\frac{1}{2} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=2,y=1
Mae’r system wedi’i datrys nawr.
2x+y-5=0,x-2y=0
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}2&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-1}&-\frac{1}{2\left(-2\right)-1}\\-\frac{1}{2\left(-2\right)-1}&\frac{2}{2\left(-2\right)-1}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 5\\\frac{1}{5}\times 5\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Gwneud y symiau.
x=2,y=1
Echdynnu yr elfennau matrics x a y.
2x+y-5=0,x-2y=0
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
2x+y-5=0,2x+2\left(-2\right)y=0
I wneud 2x a x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 1 a holl dermau naill ochr yr ail â 2.
2x+y-5=0,2x-4y=0
Symleiddio.
2x-2x+y+4y-5=0
Tynnwch 2x-4y=0 o 2x+y-5=0 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
y+4y-5=0
Adio 2x at -2x. Mae'r termau 2x a -2x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
5y-5=0
Adio y at 4y.
5y=5
Adio 5 at ddwy ochr yr hafaliad.
y=1
Rhannu’r ddwy ochr â 5.
x-2=0
Cyfnewidiwch 1 am y yn x-2y=0. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=2
Adio 2 at ddwy ochr yr hafaliad.
x=2,y=1
Mae’r system wedi’i datrys nawr.