Datrys ar gyfer a
\left\{\begin{matrix}a=\frac{\left(x-1\right)\left(f+fx-2x^{2}\right)}{2x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }f=0\end{matrix}\right.
Datrys ar gyfer f
\left\{\begin{matrix}f=-\frac{x\left(-x^{2}+x-a\right)}{t\left(x-1\right)}\text{, }&x\neq 1\text{ and }t\neq 0\\f\in \mathrm{R}\text{, }&\left(a=0\text{ and }x=1\right)\text{ or }\left(a\leq \frac{1}{4}\text{ and }t=0\text{ and }x=\frac{-\sqrt{1-4a}+1}{2}\right)\text{ or }\left(x=\frac{\sqrt{1-4a}+1}{2}\text{ and }a\leq \frac{1}{4}\text{ and }t=0\text{ and }a\neq 0\right)\text{ or }\left(t=0\text{ and }x=0\right)\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
x^{3}-x^{2}+ax=\int _{1}^{x}ft\mathrm{d}t
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
-x^{2}+ax=\int _{1}^{x}ft\mathrm{d}t-x^{3}
Tynnu x^{3} o'r ddwy ochr.
ax=\int _{1}^{x}ft\mathrm{d}t-x^{3}+x^{2}
Ychwanegu x^{2} at y ddwy ochr.
xa=\frac{f\left(x^{2}-1\right)}{2}-x^{3}+x^{2}
Mae'r hafaliad yn y ffurf safonol.
\frac{xa}{x}=\frac{\left(x-1\right)\left(f+fx-2x^{2}\right)}{2x}
Rhannu’r ddwy ochr â x.
a=\frac{\left(x-1\right)\left(f+fx-2x^{2}\right)}{2x}
Mae rhannu â x yn dad-wneud lluosi â x.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}