Datrys ar gyfer c
\left\{\begin{matrix}c=\frac{3^{\frac{4}{3}}}{9t^{\frac{5}{3}}}+\frac{4С}{9t^{3}}\text{, }&t\neq 0\\c\in \mathrm{R}\text{, }&С=0\text{ and }t=0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{\frac{4}{2}}tc
Lluoswch ddwy ochr yr hafaliad â 4.
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{2}tc
Rhannu 4 â 2 i gael 2.
4\int \sqrt[3]{3t}\mathrm{d}t=3^{2}t^{2}tc
Ehangu \left(3t\right)^{2}.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{2}tc
Cyfrifo 3 i bŵer 2 a chael 9.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{3}c
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 2 a 1 i gael 3.
9t^{3}c=4\int \sqrt[3]{3t}\mathrm{d}t
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
9t^{3}c=4\sqrt[3]{3}t^{\frac{4}{3}}+4С
Mae'r hafaliad yn y ffurf safonol.
\frac{9t^{3}c}{9t^{3}}=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
Rhannu’r ddwy ochr â 9t^{3}.
c=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
Mae rhannu â 9t^{3} yn dad-wneud lluosi â 9t^{3}.
c=\frac{4\left(\frac{\left(3t\right)^{\frac{4}{3}}}{3}+С\right)}{9t^{3}}
Rhannwch \frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С â 9t^{3}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}