Enrhifo
\left\{\begin{matrix}\frac{xze^{xz}-2e^{xz}}{z^{3}}+С\left(x+1\right),&z\neq 0\\Сx+\frac{x^{3}}{6}+С_{1},&z=0\end{matrix}\right.
Gwahaniaethu w.r.t. x
\left\{\begin{matrix}\frac{xze^{xz}-e^{xz}}{z^{2}}+С,&z\neq 0\\\frac{x^{2}}{2}+С,&z=0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}
Symleiddio.
\int \frac{x^{2}}{2}\mathrm{d}x+\int С_{4}\mathrm{d}x
Integreiddio'r swm fesul term.
\frac{\int x^{2}\mathrm{d}x}{2}+\int С_{4}\mathrm{d}x
Ffactoreiddio allan y cysonyn ym mhob un o'r termau.
\frac{x^{3}}{6}+\int С_{4}\mathrm{d}x
Ers \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int x^{2}\mathrm{d}x gyda \frac{x^{3}}{3}. Lluoswch \frac{1}{2} â \frac{x^{3}}{3}.
\frac{x^{3}}{6}+С_{4}x
Canfod integryn С_{4} gan ddefnyddio'r rheol tabl o integrynnau cyffredin \int a\mathrm{d}x=ax.
\left\{\begin{matrix}\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}+С_{7},&\\\frac{x^{3}}{6}+С_{4}x+С_{7},&\end{matrix}\right.
Os yw F\left(x\right) yn integryn amhendant o f\left(x\right), yna bydd F\left(x\right)+C yn rhoi’r set o holl integrynnau amhendant f\left(x\right). Felly, ychwanegwch gysonyn yr integryn C\in \mathrm{R} at y canlyniad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}