Datrys ar gyfer t
t = \frac{32}{7} = 4\frac{4}{7} \approx 4.571428571
Rhannu
Copïo i clipfwrdd
17\left(20^{2}+\left(1.5t\right)^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
All y newidyn t ddim fod yn hafal i 0 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad wrth 1020t, lluoswm cyffredin lleiaf 60t,-102t.
17\left(400+\left(1.5t\right)^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Cyfrifo 20 i bŵer 2 a chael 400.
17\left(400+1.5^{2}t^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Ehangu \left(1.5t\right)^{2}.
17\left(400+2.25t^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Cyfrifo 1.5 i bŵer 2 a chael 2.25.
17\left(400+2.25t^{2}-\left(144+36t+2.25t^{2}\right)\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(12+1.5t\right)^{2}.
17\left(400+2.25t^{2}-144-36t-2.25t^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
I ddod o hyd i wrthwyneb 144+36t+2.25t^{2}, dewch o hyd i wrthwyneb pob term.
17\left(256+2.25t^{2}-36t-2.25t^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Tynnu 144 o 400 i gael 256.
17\left(256-36t\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Cyfuno 2.25t^{2} a -2.25t^{2} i gael 0.
4352-612t=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Defnyddio’r briodwedd ddosbarthu i luosi 17 â 256-36t.
4352-612t=-10\left(1156+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Cyfrifo 34 i bŵer 2 a chael 1156.
4352-612t=-10\left(1156+1.5^{2}t^{2}-\left(30+1.5t\right)^{2}\right)
Ehangu \left(1.5t\right)^{2}.
4352-612t=-10\left(1156+2.25t^{2}-\left(30+1.5t\right)^{2}\right)
Cyfrifo 1.5 i bŵer 2 a chael 2.25.
4352-612t=-10\left(1156+2.25t^{2}-\left(900+90t+2.25t^{2}\right)\right)
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(30+1.5t\right)^{2}.
4352-612t=-10\left(1156+2.25t^{2}-900-90t-2.25t^{2}\right)
I ddod o hyd i wrthwyneb 900+90t+2.25t^{2}, dewch o hyd i wrthwyneb pob term.
4352-612t=-10\left(256+2.25t^{2}-90t-2.25t^{2}\right)
Tynnu 900 o 1156 i gael 256.
4352-612t=-10\left(256-90t\right)
Cyfuno 2.25t^{2} a -2.25t^{2} i gael 0.
4352-612t=-2560+900t
Defnyddio’r briodwedd ddosbarthu i luosi -10 â 256-90t.
4352-612t-900t=-2560
Tynnu 900t o'r ddwy ochr.
4352-1512t=-2560
Cyfuno -612t a -900t i gael -1512t.
-1512t=-2560-4352
Tynnu 4352 o'r ddwy ochr.
-1512t=-6912
Tynnu 4352 o -2560 i gael -6912.
t=\frac{-6912}{-1512}
Rhannu’r ddwy ochr â -1512.
t=\frac{32}{7}
Lleihau'r ffracsiwn \frac{-6912}{-1512} i'r graddau lleiaf posib drwy dynnu a chanslo allan -216.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}