Enrhifo
\frac{x+20}{100-x^{2}}
Gwahaniaethu w.r.t. x
\frac{x^{2}+40x+100}{\left(100-x^{2}\right)^{2}}
Graff
Rhannu
Copïo i clipfwrdd
\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x}
Ffactora x^{2}-100.
\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(x-10\right)\left(x+10\right) a 10-x yw \left(x-10\right)\left(x+10\right). Lluoswch \frac{2}{10-x} â \frac{-\left(x+10\right)}{-\left(x+10\right)}.
\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
Gan fod gan \frac{x}{\left(x-10\right)\left(x+10\right)} a \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)}
Gwnewch y gwaith lluosi yn x+2\left(-1\right)\left(x+10\right).
\frac{-x-20}{\left(x-10\right)\left(x+10\right)}
Cyfuno termau tebyg yn x-2x-20.
\frac{-x-20}{x^{2}-100}
Ehangu \left(x-10\right)\left(x+10\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x})
Ffactora x^{2}-100.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(x-10\right)\left(x+10\right) a 10-x yw \left(x-10\right)\left(x+10\right). Lluoswch \frac{2}{10-x} â \frac{-\left(x+10\right)}{-\left(x+10\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
Gan fod gan \frac{x}{\left(x-10\right)\left(x+10\right)} a \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)})
Gwnewch y gwaith lluosi yn x+2\left(-1\right)\left(x+10\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{\left(x-10\right)\left(x+10\right)})
Cyfuno termau tebyg yn x-2x-20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{x^{2}-100})
Ystyriwch \left(x-10\right)\left(x+10\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Sgwâr 10.
\frac{\left(x^{2}-100\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}-20)-\left(-x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-100)}{\left(x^{2}-100\right)^{2}}
Ar gyfer unrhyw ddau ffwythiant y mae modd eu gwahaniaethu, deilliad cyniferydd dau ffwythiant yw’r enwadur wedi’i luosi â deilliad yr enwadur wedi’i dynnu o’r rhifiadur wedi’i luosi â deilliad yr enwadur, y cwbl wedi’i rannu â’r enwadur wedi'i sgwario.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{1-1}-\left(-x^{1}-20\right)\times 2x^{2-1}}{\left(x^{2}-100\right)^{2}}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{0}-\left(-x^{1}-20\right)\times 2x^{1}}{\left(x^{2}-100\right)^{2}}
Gwneud y symiau.
\frac{x^{2}\left(-1\right)x^{0}-100\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Ehangu gan ddefnyddio’r briodwedd ddosbarthol.
\frac{-x^{2}-100\left(-1\right)x^{0}-\left(-2x^{1+1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
I luosi pwerau sy’n rhannu’r un sail, ychwanegwch eu hesbonyddion.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Gwneud y symiau.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}\right)-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Tynnu’r cromfachau diangen.
\frac{\left(-1-\left(-2\right)\right)x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Cyfuno termau sydd yr un peth.
\frac{x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Tynnu -2 o -1.
\frac{x^{2}+100x^{0}-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Ar gyfer unrhyw derm t, t^{1}=t.
\frac{x^{2}+100\times 1-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.
\frac{x^{2}+100-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Ar gyfer unrhyw derm t, t\times 1=t a 1t=t.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}