Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Gwahaniaethu w.r.t. x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x}
Ffactora x^{2}-100.
\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(x-10\right)\left(x+10\right) a 10-x yw \left(x-10\right)\left(x+10\right). Lluoswch \frac{2}{10-x} â \frac{-\left(x+10\right)}{-\left(x+10\right)}.
\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
Gan fod gan \frac{x}{\left(x-10\right)\left(x+10\right)} a \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)}
Gwnewch y gwaith lluosi yn x+2\left(-1\right)\left(x+10\right).
\frac{-x-20}{\left(x-10\right)\left(x+10\right)}
Cyfuno termau tebyg yn x-2x-20.
\frac{-x-20}{x^{2}-100}
Ehangu \left(x-10\right)\left(x+10\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x})
Ffactora x^{2}-100.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(x-10\right)\left(x+10\right) a 10-x yw \left(x-10\right)\left(x+10\right). Lluoswch \frac{2}{10-x} â \frac{-\left(x+10\right)}{-\left(x+10\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
Gan fod gan \frac{x}{\left(x-10\right)\left(x+10\right)} a \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)})
Gwnewch y gwaith lluosi yn x+2\left(-1\right)\left(x+10\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{\left(x-10\right)\left(x+10\right)})
Cyfuno termau tebyg yn x-2x-20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{x^{2}-100})
Ystyriwch \left(x-10\right)\left(x+10\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Sgwâr 10.
\frac{\left(x^{2}-100\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}-20)-\left(-x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-100)}{\left(x^{2}-100\right)^{2}}
Ar gyfer unrhyw ddau ffwythiant y mae modd eu gwahaniaethu, deilliad cyniferydd dau ffwythiant yw’r enwadur wedi’i luosi â deilliad yr enwadur wedi’i dynnu o’r rhifiadur wedi’i luosi â deilliad yr enwadur, y cwbl wedi’i rannu â’r enwadur wedi'i sgwario.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{1-1}-\left(-x^{1}-20\right)\times 2x^{2-1}}{\left(x^{2}-100\right)^{2}}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{0}-\left(-x^{1}-20\right)\times 2x^{1}}{\left(x^{2}-100\right)^{2}}
Gwneud y symiau.
\frac{x^{2}\left(-1\right)x^{0}-100\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Ehangu gan ddefnyddio’r briodwedd ddosbarthol.
\frac{-x^{2}-100\left(-1\right)x^{0}-\left(-2x^{1+1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
I luosi pwerau sy’n rhannu’r un sail, ychwanegwch eu hesbonyddion.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Gwneud y symiau.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}\right)-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Tynnu’r cromfachau diangen.
\frac{\left(-1-\left(-2\right)\right)x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Cyfuno termau sydd yr un peth.
\frac{x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Tynnu -2 o -1.
\frac{x^{2}+100x^{0}-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Ar gyfer unrhyw derm t, t^{1}=t.
\frac{x^{2}+100\times 1-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.
\frac{x^{2}+100-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Ar gyfer unrhyw derm t, t\times 1=t a 1t=t.