Enrhifo
\frac{v+3}{v+1}
Gwahaniaethu w.r.t. v
-\frac{2}{\left(v+1\right)^{2}}
Rhannu
Copïo i clipfwrdd
\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin v+1 a v-1 yw \left(v-1\right)\left(v+1\right). Lluoswch \frac{v}{v+1} â \frac{v-1}{v-1}. Lluoswch \frac{3}{v-1} â \frac{v+1}{v+1}.
\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Gan fod gan \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} a \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Gwnewch y gwaith lluosi yn v\left(v-1\right)+3\left(v+1\right).
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Cyfuno termau tebyg yn v^{2}-v+3v+3.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)}
Ffactora v^{2}-1.
\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)}
Gan fod gan \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} a \frac{6}{\left(v-1\right)\left(v+1\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}
Cyfuno termau tebyg yn v^{2}+2v+3-6.
\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}.
\frac{v+3}{v+1}
Canslo v-1 yn y rhifiadur a'r enwadur.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin v+1 a v-1 yw \left(v-1\right)\left(v+1\right). Lluoswch \frac{v}{v+1} â \frac{v-1}{v-1}. Lluoswch \frac{3}{v-1} â \frac{v+1}{v+1}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Gan fod gan \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} a \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Gwnewch y gwaith lluosi yn v\left(v-1\right)+3\left(v+1\right).
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Cyfuno termau tebyg yn v^{2}-v+3v+3.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)})
Ffactora v^{2}-1.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)})
Gan fod gan \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} a \frac{6}{\left(v-1\right)\left(v+1\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)})
Cyfuno termau tebyg yn v^{2}+2v+3-6.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)})
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v+3}{v+1})
Canslo v-1 yn y rhifiadur a'r enwadur.
\frac{\left(v^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+3)-\left(v^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+1)}{\left(v^{1}+1\right)^{2}}
Ar gyfer unrhyw ddau ffwythiant y mae modd eu gwahaniaethu, deilliad cyniferydd dau ffwythiant yw’r enwadur wedi’i luosi â deilliad yr enwadur wedi’i dynnu o’r rhifiadur wedi’i luosi â deilliad yr enwadur, y cwbl wedi’i rannu â’r enwadur wedi'i sgwario.
\frac{\left(v^{1}+1\right)v^{1-1}-\left(v^{1}+3\right)v^{1-1}}{\left(v^{1}+1\right)^{2}}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{\left(v^{1}+1\right)v^{0}-\left(v^{1}+3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Gwneud y symiau.
\frac{v^{1}v^{0}+v^{0}-\left(v^{1}v^{0}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Ehangu gan ddefnyddio’r briodwedd ddosbarthol.
\frac{v^{1}+v^{0}-\left(v^{1}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
I luosi pwerau sy’n rhannu’r un sail, ychwanegwch eu hesbonyddion.
\frac{v^{1}+v^{0}-v^{1}-3v^{0}}{\left(v^{1}+1\right)^{2}}
Tynnu’r cromfachau diangen.
\frac{\left(1-1\right)v^{1}+\left(1-3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Cyfuno termau sydd yr un peth.
\frac{-2v^{0}}{\left(v^{1}+1\right)^{2}}
Tynnwch 1 o 1 a 3 o 1.
\frac{-2v^{0}}{\left(v+1\right)^{2}}
Ar gyfer unrhyw derm t, t^{1}=t.
\frac{-2}{\left(v+1\right)^{2}}
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}