Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Gwahaniaethu w.r.t. x
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{10}{15}x\right)^{10}-\left(1.5x\right)^{2}+1)
Ehangu \frac{1}{1.5} drwy luosi'r rhifiadur a'r enwadur gyda 10.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{2}{3}x\right)^{10}-\left(1.5x\right)^{2}+1)
Lleihau'r ffracsiwn \frac{10}{15} i'r graddau lleiaf posib drwy dynnu a chanslo allan 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{2}{3}\right)^{10}x^{10}-\left(1.5x\right)^{2}+1)
Ehangu \left(\frac{2}{3}x\right)^{10}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1024}{59049}x^{10}-\left(1.5x\right)^{2}+1)
Cyfrifo \frac{2}{3} i bŵer 10 a chael \frac{1024}{59049}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1024}{59049}x^{10}-1.5^{2}x^{2}+1)
Ehangu \left(1.5x\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1024}{59049}x^{10}-2.25x^{2}+1)
Cyfrifo 1.5 i bŵer 2 a chael 2.25.
10\times \frac{1024}{59049}x^{10-1}+2\left(-2.25\right)x^{2-1}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{10240}{59049}x^{10-1}+2\left(-2.25\right)x^{2-1}
Lluoswch 10 â \frac{1024}{59049}.
\frac{10240}{59049}x^{9}+2\left(-2.25\right)x^{2-1}
Tynnu 1 o 10.
\frac{10240}{59049}x^{9}-4.5x^{2-1}
Lluoswch 2 â -2.25.
\frac{10240}{59049}x^{9}-4.5x^{1}
Tynnu 1 o 2.
\frac{10240}{59049}x^{9}-4.5x
Ar gyfer unrhyw derm t, t^{1}=t.