Datrys ar gyfer y
y=\frac{4x}{\left(x+4\right)\left(x+16\right)}
x\neq -16\text{ and }x\neq -4
Datrys ar gyfer x
\left\{\begin{matrix}x=-\frac{2\left(\sqrt{\left(y-1\right)\left(9y-1\right)}+5y-1\right)}{y}\text{; }x=-\frac{2\left(-\sqrt{\left(y-1\right)\left(9y-1\right)}+5y-1\right)}{y}\text{, }&y\geq 1\text{ or }\left(y\neq 0\text{ and }y\leq \frac{1}{9}\right)\\x=0\text{, }&y=0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
4x=y\left(x+4\right)\left(x+16\right)
Lluoswch ddwy ochr yr hafaliad â \left(x+4\right)\left(x+16\right).
4x=\left(yx+4y\right)\left(x+16\right)
Defnyddio’r briodwedd ddosbarthu i luosi y â x+4.
4x=yx^{2}+20yx+64y
Defnyddio’r briodwedd ddosbarthu i luosi yx+4y â x+16 a chyfuno termau tebyg.
yx^{2}+20yx+64y=4x
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(x^{2}+20x+64\right)y=4x
Cyfuno pob term sy'n cynnwys y.
\frac{\left(x^{2}+20x+64\right)y}{x^{2}+20x+64}=\frac{4x}{x^{2}+20x+64}
Rhannu’r ddwy ochr â x^{2}+20x+64.
y=\frac{4x}{x^{2}+20x+64}
Mae rhannu â x^{2}+20x+64 yn dad-wneud lluosi â x^{2}+20x+64.
y=\frac{4x}{\left(x+4\right)\left(x+16\right)}
Rhannwch 4x â x^{2}+20x+64.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}