Enrhifo
-\frac{35\sqrt{3}}{6}+\frac{37}{3}\approx 2.229703623
Rhannu
Copïo i clipfwrdd
\frac{4\left(36-36\sqrt{3}+9\left(\sqrt{3}\right)^{2}\right)+1}{12-6\sqrt{3}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(6-3\sqrt{3}\right)^{2}.
\frac{4\left(36-36\sqrt{3}+9\times 3\right)+1}{12-6\sqrt{3}}
Sgwâr \sqrt{3} yw 3.
\frac{4\left(36-36\sqrt{3}+27\right)+1}{12-6\sqrt{3}}
Lluosi 9 a 3 i gael 27.
\frac{4\left(63-36\sqrt{3}\right)+1}{12-6\sqrt{3}}
Adio 36 a 27 i gael 63.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{\left(12-6\sqrt{3}\right)\left(12+6\sqrt{3}\right)}
Mae'n rhesymoli enwadur \frac{4\left(63-36\sqrt{3}\right)+1}{12-6\sqrt{3}} drwy luosi'r rhifiadur a'r enwadur â 12+6\sqrt{3}.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{12^{2}-\left(-6\sqrt{3}\right)^{2}}
Ystyriwch \left(12-6\sqrt{3}\right)\left(12+6\sqrt{3}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-\left(-6\sqrt{3}\right)^{2}}
Cyfrifo 12 i bŵer 2 a chael 144.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-\left(-6\right)^{2}\left(\sqrt{3}\right)^{2}}
Ehangu \left(-6\sqrt{3}\right)^{2}.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-36\left(\sqrt{3}\right)^{2}}
Cyfrifo -6 i bŵer 2 a chael 36.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-36\times 3}
Sgwâr \sqrt{3} yw 3.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{144-108}
Lluosi 36 a 3 i gael 108.
\frac{\left(4\left(63-36\sqrt{3}\right)+1\right)\left(12+6\sqrt{3}\right)}{36}
Tynnu 108 o 144 i gael 36.
\frac{\left(252-144\sqrt{3}+1\right)\left(12+6\sqrt{3}\right)}{36}
Defnyddio’r briodwedd ddosbarthu i luosi 4 â 63-36\sqrt{3}.
\frac{\left(253-144\sqrt{3}\right)\left(12+6\sqrt{3}\right)}{36}
Adio 252 a 1 i gael 253.
\frac{3036-210\sqrt{3}-864\left(\sqrt{3}\right)^{2}}{36}
Defnyddio’r briodwedd ddosbarthu i luosi 253-144\sqrt{3} â 12+6\sqrt{3} a chyfuno termau tebyg.
\frac{3036-210\sqrt{3}-864\times 3}{36}
Sgwâr \sqrt{3} yw 3.
\frac{3036-210\sqrt{3}-2592}{36}
Lluosi -864 a 3 i gael -2592.
\frac{444-210\sqrt{3}}{36}
Tynnu 2592 o 3036 i gael 444.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}