Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

10+\left(x-5\right)x=\left(x+1\right)\times 3
All y newidyn x ddim fod yn hafal i unrhyw un o’r gwerthoedd -1,5 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad wrth \left(x-5\right)\left(x+1\right), lluoswm cyffredin lleiaf \left(x-5\right)\left(x+1\right),x+1,x-5.
10+x^{2}-5x=\left(x+1\right)\times 3
Defnyddio’r briodwedd ddosbarthu i luosi x-5 â x.
10+x^{2}-5x=3x+3
Defnyddio’r briodwedd ddosbarthu i luosi x+1 â 3.
10+x^{2}-5x-3x=3
Tynnu 3x o'r ddwy ochr.
10+x^{2}-8x=3
Cyfuno -5x a -3x i gael -8x.
10+x^{2}-8x-3=0
Tynnu 3 o'r ddwy ochr.
7+x^{2}-8x=0
Tynnu 3 o 10 i gael 7.
x^{2}-8x+7=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, -8 am b, a 7 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Sgwâr -8.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Lluoswch -4 â 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Adio 64 at -28.
x=\frac{-\left(-8\right)±6}{2}
Cymryd isradd 36.
x=\frac{8±6}{2}
Gwrthwyneb -8 yw 8.
x=\frac{14}{2}
Datryswch yr hafaliad x=\frac{8±6}{2} pan fydd ± yn plws. Adio 8 at 6.
x=7
Rhannwch 14 â 2.
x=\frac{2}{2}
Datryswch yr hafaliad x=\frac{8±6}{2} pan fydd ± yn minws. Tynnu 6 o 8.
x=1
Rhannwch 2 â 2.
x=7 x=1
Mae’r hafaliad wedi’i ddatrys nawr.
10+\left(x-5\right)x=\left(x+1\right)\times 3
All y newidyn x ddim fod yn hafal i unrhyw un o’r gwerthoedd -1,5 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad wrth \left(x-5\right)\left(x+1\right), lluoswm cyffredin lleiaf \left(x-5\right)\left(x+1\right),x+1,x-5.
10+x^{2}-5x=\left(x+1\right)\times 3
Defnyddio’r briodwedd ddosbarthu i luosi x-5 â x.
10+x^{2}-5x=3x+3
Defnyddio’r briodwedd ddosbarthu i luosi x+1 â 3.
10+x^{2}-5x-3x=3
Tynnu 3x o'r ddwy ochr.
10+x^{2}-8x=3
Cyfuno -5x a -3x i gael -8x.
x^{2}-8x=3-10
Tynnu 10 o'r ddwy ochr.
x^{2}-8x=-7
Tynnu 10 o 3 i gael -7.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Rhannwch -8, cyfernod y term x, â 2 i gael -4. Yna ychwanegwch sgwâr -4 at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-8x+16=-7+16
Sgwâr -4.
x^{2}-8x+16=9
Adio -7 at 16.
\left(x-4\right)^{2}=9
Ffactora x^{2}-8x+16. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Cymrwch isradd dwy ochr yr hafaliad.
x-4=3 x-4=-3
Symleiddio.
x=7 x=1
Adio 4 at ddwy ochr yr hafaliad.