Enrhifo
\frac{3x^{2}}{2}
Ehangu
\frac{3x^{2}}{2}
Graff
Rhannu
Copïo i clipfwrdd
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio’r briodwedd ddosbarthu i luosi \frac{1}{2}x â 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio’r briodwedd ddosbarthu i luosi 3 â x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio’r briodwedd ddosbarthu i luosi 3x+3 â x-1 a chyfuno termau tebyg.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Cyfuno -\frac{1}{2}x^{2} a 3x^{2} i gael \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio’r briodwedd ddosbarthu i luosi x â x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
I ddod o hyd i wrthwyneb x^{3}-2x^{2}+x, dewch o hyd i wrthwyneb pob term.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Cyfuno \frac{5}{2}x^{2} a 2x^{2} i gael \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Cyfuno \frac{3}{2}x a -x i gael \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(7x-8\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} i ehangu'r \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(7x-8\right)
Cyfuno -x^{3} a x^{3} i gael 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(7x-8\right)
Cyfuno \frac{9}{2}x^{2} a -3x^{2} i gael \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(7x-8\right)
Cyfuno \frac{1}{2}x a 3x i gael \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(7x-8\right)
Tynnu 1 o -3 i gael -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{7}{2}x+4
Defnyddio’r briodwedd ddosbarthu i luosi -\frac{1}{2} â 7x-8.
\frac{3}{2}x^{2}-4+4
Cyfuno \frac{7}{2}x a -\frac{7}{2}x i gael 0.
\frac{3}{2}x^{2}
Adio -4 a 4 i gael 0.
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio’r briodwedd ddosbarthu i luosi \frac{1}{2}x â 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio’r briodwedd ddosbarthu i luosi 3 â x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio’r briodwedd ddosbarthu i luosi 3x+3 â x-1 a chyfuno termau tebyg.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Cyfuno -\frac{1}{2}x^{2} a 3x^{2} i gael \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Defnyddio’r briodwedd ddosbarthu i luosi x â x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
I ddod o hyd i wrthwyneb x^{3}-2x^{2}+x, dewch o hyd i wrthwyneb pob term.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Cyfuno \frac{5}{2}x^{2} a 2x^{2} i gael \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Cyfuno \frac{3}{2}x a -x i gael \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(7x-8\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} i ehangu'r \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(7x-8\right)
Cyfuno -x^{3} a x^{3} i gael 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(7x-8\right)
Cyfuno \frac{9}{2}x^{2} a -3x^{2} i gael \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(7x-8\right)
Cyfuno \frac{1}{2}x a 3x i gael \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(7x-8\right)
Tynnu 1 o -3 i gael -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{7}{2}x+4
Defnyddio’r briodwedd ddosbarthu i luosi -\frac{1}{2} â 7x-8.
\frac{3}{2}x^{2}-4+4
Cyfuno \frac{7}{2}x a -\frac{7}{2}x i gael 0.
\frac{3}{2}x^{2}
Adio -4 a 4 i gael 0.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}