Enrhifo
\frac{\sqrt{502}+5\sqrt{2}}{904}\approx 0.032606664
Rhannu
Copïo i clipfwrdd
\frac{1}{2\sqrt{502}-\sqrt{200}}
Ffactora 2008=2^{2}\times 502. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 502} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{502}. Cymryd isradd 2^{2}.
\frac{1}{2\sqrt{502}-10\sqrt{2}}
Ffactora 200=10^{2}\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{10^{2}\times 2} fel lluoswm ail israddau \sqrt{10^{2}}\sqrt{2}. Cymryd isradd 10^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right)}
Mae'n rhesymoli enwadur \frac{1}{2\sqrt{502}-10\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â 2\sqrt{502}+10\sqrt{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Ystyriwch \left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2^{2}\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Ehangu \left(2\sqrt{502}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{4\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{2\sqrt{502}+10\sqrt{2}}{4\times 502-\left(-10\sqrt{2}\right)^{2}}
Sgwâr \sqrt{502} yw 502.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\sqrt{2}\right)^{2}}
Lluosi 4 a 502 i gael 2008.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\right)^{2}\left(\sqrt{2}\right)^{2}}
Ehangu \left(-10\sqrt{2}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\left(\sqrt{2}\right)^{2}}
Cyfrifo -10 i bŵer 2 a chael 100.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\times 2}
Sgwâr \sqrt{2} yw 2.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-200}
Lluosi 100 a 2 i gael 200.
\frac{2\sqrt{502}+10\sqrt{2}}{1808}
Tynnu 200 o 2008 i gael 1808.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}