Neidio i'r prif gynnwys
Enrhifo
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\frac{1}{2\sqrt{502}-\sqrt{200}}
Ffactora 2008=2^{2}\times 502. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 502} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{502}. Cymryd isradd 2^{2}.
\frac{1}{2\sqrt{502}-10\sqrt{2}}
Ffactora 200=10^{2}\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{10^{2}\times 2} fel lluoswm ail israddau \sqrt{10^{2}}\sqrt{2}. Cymryd isradd 10^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right)}
Mae'n rhesymoli enwadur \frac{1}{2\sqrt{502}-10\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â 2\sqrt{502}+10\sqrt{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Ystyriwch \left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2^{2}\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Ehangu \left(2\sqrt{502}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{4\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{2\sqrt{502}+10\sqrt{2}}{4\times 502-\left(-10\sqrt{2}\right)^{2}}
Sgwâr \sqrt{502} yw 502.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\sqrt{2}\right)^{2}}
Lluosi 4 a 502 i gael 2008.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\right)^{2}\left(\sqrt{2}\right)^{2}}
Ehangu \left(-10\sqrt{2}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\left(\sqrt{2}\right)^{2}}
Cyfrifo -10 i bŵer 2 a chael 100.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\times 2}
Sgwâr \sqrt{2} yw 2.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-200}
Lluosi 100 a 2 i gael 200.
\frac{2\sqrt{502}+10\sqrt{2}}{1808}
Tynnu 200 o 2008 i gael 1808.