Gwireddu
gwir
Rhannu
Copïo i clipfwrdd
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{\sqrt{2}\sqrt{2}}=\frac{\sqrt{2}}{2}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Mae'n rhesymoli enwadur \frac{1}{\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{2}.
\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Sgwâr \sqrt{2} yw 2.
\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Tynnu \frac{\sqrt{2}}{2} o'r ddwy ochr.
0=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Cyfuno \frac{\sqrt{2}}{2} a -\frac{\sqrt{2}}{2} i gael 0.
\text{true}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Cymharu 0 gyda 0.
\text{true}\text{ and }\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0
Tynnu \frac{\sqrt{2}}{2} o'r ddwy ochr.
\text{true}\text{ and }0=0
Cyfuno \frac{\sqrt{2}}{2} a -\frac{\sqrt{2}}{2} i gael 0.
\text{true}\text{ and }\text{true}
Cymharu 0 gyda 0.
\text{true}
Cysylltydd \text{true} a \text{true} yw \text{true}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}