Enrhifo
\frac{3t^{4}}{4000}-\frac{t^{3}}{300}-\frac{3t^{2}}{20}+4t
Ffactor
\frac{t\left(9t^{3}-40t^{2}-1800t+48000\right)}{12000}
Rhannu
Copïo i clipfwrdd
\frac{3}{4000}t^{4}-\frac{1}{3}\times 0.01t^{3}-\frac{1}{2}\times 0.3t^{2}+4t
Lluosi \frac{3}{4} a 0.001 i gael \frac{3}{4000}.
\frac{3}{4000}t^{4}-\frac{1}{300}t^{3}-\frac{1}{2}\times 0.3t^{2}+4t
Lluosi \frac{1}{3} a 0.01 i gael \frac{1}{300}.
\frac{3}{4000}t^{4}-\frac{1}{300}t^{3}-\frac{3}{20}t^{2}+4t
Lluosi \frac{1}{2} a 0.3 i gael \frac{3}{20}.
factor(\frac{3}{4000}t^{4}-\frac{1}{3}\times 0.01t^{3}-\frac{1}{2}\times 0.3t^{2}+4t)
Lluosi \frac{3}{4} a 0.001 i gael \frac{3}{4000}.
factor(\frac{3}{4000}t^{4}-\frac{1}{300}t^{3}-\frac{1}{2}\times 0.3t^{2}+4t)
Lluosi \frac{1}{3} a 0.01 i gael \frac{1}{300}.
factor(\frac{3}{4000}t^{4}-\frac{1}{300}t^{3}-\frac{3}{20}t^{2}+4t)
Lluosi \frac{1}{2} a 0.3 i gael \frac{3}{20}.
\frac{9t^{4}-40t^{3}-1800t^{2}+48000t}{12000}
Ffactora allan \frac{1}{12000}.
t\left(9t^{3}-40t^{2}-1800t+48000\right)
Ystyriwch 9t^{4}-40t^{3}-1800t^{2}+48000t. Ffactora allan t.
\frac{t\left(9t^{3}-40t^{2}-1800t+48000\right)}{12000}
Ailysgrifennwch y mynegiad cyfan wedi'i ffactorio. Nid yw'r polynomial 9t^{3}-40t^{2}-1800t+48000 yn cael ei ffactorio oherwydd does dim gwreiddiau rhesymegol ganddo.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}