Vyřešte pro: x
x=-1
x=10
Graf
Sdílet
Zkopírováno do schránky
a+b=-9 ab=-10
Chcete-li rovnici vyřešit, součinitel x^{2}-9x-10 použijte vzorec x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
1,-10 2,-5
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je záporný, má záporné číslo vyšší absolutní hodnotu než kladné číslo. Uveďte všechny celočíselné páry, které dávají -10 produktu.
1-10=-9 2-5=-3
Vypočtěte součet pro jednotlivé dvojice.
a=-10 b=1
Řešením je dvojice se součtem -9.
\left(x-10\right)\left(x+1\right)
Přepište rozložený výraz \left(x+a\right)\left(x+b\right) pomocí získaných hodnot.
x=10 x=-1
Chcete-li najít řešení rovnic, vyřešte x-10=0 a x+1=0.
a+b=-9 ab=1\left(-10\right)=-10
Chcete-li rovnici vyřešit, koeficient na levé straně seskupte. Nejprve je třeba přepsát levou stranu jako x^{2}+ax+bx-10. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
1,-10 2,-5
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je záporný, má záporné číslo vyšší absolutní hodnotu než kladné číslo. Uveďte všechny celočíselné páry, které dávají -10 produktu.
1-10=-9 2-5=-3
Vypočtěte součet pro jednotlivé dvojice.
a=-10 b=1
Řešením je dvojice se součtem -9.
\left(x^{2}-10x\right)+\left(x-10\right)
Zapište x^{2}-9x-10 jako: \left(x^{2}-10x\right)+\left(x-10\right).
x\left(x-10\right)+x-10
Vytkněte x z výrazu x^{2}-10x.
\left(x-10\right)\left(x+1\right)
Vytkněte společný člen x-10 s využitím distributivnosti.
x=10 x=-1
Chcete-li najít řešení rovnic, vyřešte x-10=0 a x+1=0.
x^{2}-9x-10=0
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-10\right)}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, -9 za b a -10 za c.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-10\right)}}{2}
Umocněte číslo -9 na druhou.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2}
Vynásobte číslo -4 číslem -10.
x=\frac{-\left(-9\right)±\sqrt{121}}{2}
Přidejte uživatele 81 do skupiny 40.
x=\frac{-\left(-9\right)±11}{2}
Vypočítejte druhou odmocninu čísla 121.
x=\frac{9±11}{2}
Opakem -9 je 9.
x=\frac{20}{2}
Teď vyřešte rovnici x=\frac{9±11}{2}, když ± je plus. Přidejte uživatele 9 do skupiny 11.
x=10
Vydělte číslo 20 číslem 2.
x=-\frac{2}{2}
Teď vyřešte rovnici x=\frac{9±11}{2}, když ± je minus. Odečtěte číslo 11 od čísla 9.
x=-1
Vydělte číslo -2 číslem 2.
x=10 x=-1
Rovnice je teď vyřešená.
x^{2}-9x-10=0
Takové kvadratické rovnice je možné vyřešit doplněním na druhou mocninu dvojčlenu. Pokud chcete rovnici doplnit na druhou mocninu dvojčlenu, musí být nejdříve ve tvaru x^{2}+bx=c.
x^{2}-9x-10-\left(-10\right)=-\left(-10\right)
Připočítejte 10 k oběma stranám rovnice.
x^{2}-9x=-\left(-10\right)
Odečtením čísla -10 od něj samotného dostaneme hodnotu 0.
x^{2}-9x=10
Odečtěte číslo -10 od čísla 0.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=10+\left(-\frac{9}{2}\right)^{2}
Vydělte -9, koeficient x termínu 2 k získání -\frac{9}{2}. Potom přidejte čtvereček -\frac{9}{2} na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}-9x+\frac{81}{4}=10+\frac{81}{4}
Umocněte zlomek -\frac{9}{2} na druhou tak, že umocníte na druhou čitatele i jmenovatele zlomku.
x^{2}-9x+\frac{81}{4}=\frac{121}{4}
Přidejte uživatele 10 do skupiny \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{121}{4}
Činitel x^{2}-9x+\frac{81}{4}. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Vypočítejte druhou odmocninu obou stran rovnice.
x-\frac{9}{2}=\frac{11}{2} x-\frac{9}{2}=-\frac{11}{2}
Proveďte zjednodušení.
x=10 x=-1
Připočítejte \frac{9}{2} k oběma stranám rovnice.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}