Přejít k hlavnímu obsahu
Vyřešte pro: x_2
Tick mark Image
Graf

Sdílet

x ^ {2} = 9 + {(17 - x 2 \sqrt{x})} \cdot {({(7 - x - 2 \sqrt{x})} - 6 \cdot 0,15643446504023092)}
Evaluate trigonometric functions in the problem
x^{2}=9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}-0,93860679024138552\right)
Vynásobením 6 a 0,15643446504023092 získáte 0,93860679024138552.
x^{2}=9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)
S využitím distributivnosti vynásobte číslo 17-x_{2}\sqrt{x} číslem 7-x-2\sqrt{x}-0,93860679024138552.
9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
Odečtěte 9 od obou stran.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}\left(\sqrt{x}\right)^{2}-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
S využitím distributivnosti vynásobte číslo 17-x_{2}\sqrt{x} číslem 7-x-2\sqrt{x}.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
Výpočtem \sqrt{x} na 2 získáte x.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x-15,95631543410355384+0,93860679024138552x_{2}\sqrt{x}=x^{2}-9
S využitím distributivnosti vynásobte číslo -0,93860679024138552 číslem 17-x_{2}\sqrt{x}.
103,04368456589644616-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x+0,93860679024138552x_{2}\sqrt{x}=x^{2}-9
Odečtěte 15,95631543410355384 od 119 a dostanete 103,04368456589644616.
103,04368456589644616-17x-34\sqrt{x}-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-9
Sloučením -7x_{2}\sqrt{x} a 0,93860679024138552x_{2}\sqrt{x} získáte -6,06139320975861448x_{2}\sqrt{x}.
-17x-34\sqrt{x}-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-9-103,04368456589644616
Odečtěte 103,04368456589644616 od obou stran.
-17x-34\sqrt{x}-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112,04368456589644616
Odečtěte 103,04368456589644616 od -9 a dostanete -112,04368456589644616.
-34\sqrt{x}-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112,04368456589644616+17x
Přidat 17x na obě strany.
-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112,04368456589644616+17x+34\sqrt{x}
Přidat 34\sqrt{x} na obě strany.
\left(-6,06139320975861448\sqrt{x}+x\sqrt{x}+2x\right)x_{2}=x^{2}-112,04368456589644616+17x+34\sqrt{x}
Slučte všechny členy obsahující x_{2}.
\left(\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}\right)x_{2}=x^{2}+17x+34\sqrt{x}-112,04368456589644616
Rovnice je ve standardním tvaru.
\frac{\left(\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}\right)x_{2}}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}=\frac{x^{2}+17x+34\sqrt{x}-112,04368456589644616}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}
Vydělte obě strany hodnotou -6,06139320975861448\sqrt{x}+x\sqrt{x}+2x.
x_{2}=\frac{x^{2}+17x+34\sqrt{x}-112,04368456589644616}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}
Dělení číslem -6,06139320975861448\sqrt{x}+x\sqrt{x}+2x ruší násobení číslem -6,06139320975861448\sqrt{x}+x\sqrt{x}+2x.
x_{2}=\frac{x^{2}+17x+34\sqrt{x}-112,04368456589644616}{\sqrt{x}\left(x+2\sqrt{x}-6,06139320975861448\right)}
Vydělte číslo x^{2}-112,04368456589644616+17x+34\sqrt{x} číslem -6,06139320975861448\sqrt{x}+x\sqrt{x}+2x.