Rozložit
\frac{x\left(x-2\right)\left(x-1\right)}{2}
Vyhodnotit
\frac{x\left(x-2\right)\left(x-1\right)}{2}
Graf
Sdílet
Zkopírováno do schránky
\frac{x^{3}-3x^{2}+2x}{2}
Vytkněte \frac{1}{2} před závorku.
x\left(x^{2}-3x+2\right)
Zvažte x^{3}-3x^{2}+2x. Vytkněte x před závorku.
a+b=-3 ab=1\times 2=2
Zvažte x^{2}-3x+2. Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx+2. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=-2 b=-1
Vzhledem k tomu, že výraz ab je kladný, mají hodnoty a a b stejné znaménko. Vzhledem k tomu, že výraz a+b je záporný, mají obě hodnoty a i b záporné znaménko. Jediná taková dvojice představuje systémové řešení.
\left(x^{2}-2x\right)+\left(-x+2\right)
Zapište x^{2}-3x+2 jako: \left(x^{2}-2x\right)+\left(-x+2\right).
x\left(x-2\right)-\left(x-2\right)
Koeficient x v prvním a -1 ve druhé skupině.
\left(x-2\right)\left(x-1\right)
Vytkněte společný člen x-2 s využitím distributivnosti.
\frac{x\left(x-2\right)\left(x-1\right)}{2}
Přepište celý rozložený výraz.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}