Přejít k hlavnímu obsahu
Derivovat vzhledem k t
Tick mark Image
Vyhodnotit
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\frac{\left(2t^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{1})-2t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(2t^{2}+1)}{\left(2t^{2}+1\right)^{2}}
V případě jakýchkoli dvou diferencovatelných funkcí je derivace podílu dvou funkcí rozdílem mezi násobkem jmenovatele a derivace čitatele a násobkem čitatele a derivace jmenovatele, to celé děleno jmenovatelem na druhou.
\frac{\left(2t^{2}+1\right)\times 2t^{1-1}-2t^{1}\times 2\times 2t^{2-1}}{\left(2t^{2}+1\right)^{2}}
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
\frac{\left(2t^{2}+1\right)\times 2t^{0}-2t^{1}\times 4t^{1}}{\left(2t^{2}+1\right)^{2}}
Proveďte výpočet.
\frac{2t^{2}\times 2t^{0}+2t^{0}-2t^{1}\times 4t^{1}}{\left(2t^{2}+1\right)^{2}}
Proveďte roznásobení s využitím distributivnosti.
\frac{2\times 2t^{2}+2t^{0}-2\times 4t^{1+1}}{\left(2t^{2}+1\right)^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele.
\frac{4t^{2}+2t^{0}-8t^{2}}{\left(2t^{2}+1\right)^{2}}
Proveďte výpočet.
\frac{\left(4-8\right)t^{2}+2t^{0}}{\left(2t^{2}+1\right)^{2}}
Slučte stejné členy.
\frac{-4t^{2}+2t^{0}}{\left(2t^{2}+1\right)^{2}}
Odečtěte číslo 8 od čísla 4.
\frac{2\left(-2t^{2}+t^{0}\right)}{\left(2t^{2}+1\right)^{2}}
Vytkněte 2 před závorku.
\frac{2\left(-2t^{2}+1\right)}{\left(2t^{2}+1\right)^{2}}
Pro všechny členy t s výjimkou 0, t^{0}=1.