Vyřešte pro: θ (complex solution)
\theta =-\frac{-3\sqrt{x^{2}}+10}{x}
x\neq 0
Vyřešte pro: θ
\theta =-\frac{-3|x|+10}{x}
x\neq 0
Vyřešte pro: x (complex solution)
\left\{\begin{matrix}x=\frac{10}{3-\theta }\text{, }&\theta \neq 3\text{ and }arg(\frac{x\theta +10}{3})<\pi \\x=-\frac{10}{\theta +3}\text{, }&\theta \neq -3\text{ and }arg(\frac{x\theta +10}{3})<\pi \end{matrix}\right,
Vyřešte pro: x
\left\{\begin{matrix}x=-\frac{10}{\theta -3}\text{, }&\theta <3\\x=-\frac{10}{\theta +3}\text{, }&\theta >-3\end{matrix}\right,
Graf
Sdílet
Zkopírováno do schránky
8\times 18+36+18\theta x=54\sqrt{x^{2}}
Vynásobte obě strany rovnice hodnotou 18.
144+36+18\theta x=54\sqrt{x^{2}}
Vynásobením 8 a 18 získáte 144.
180+18\theta x=54\sqrt{x^{2}}
Sečtením 144 a 36 získáte 180.
18\theta x=54\sqrt{x^{2}}-180
Odečtěte 180 od obou stran.
18x\theta =54\sqrt{x^{2}}-180
Rovnice je ve standardním tvaru.
\frac{18x\theta }{18x}=\frac{54\sqrt{x^{2}}-180}{18x}
Vydělte obě strany hodnotou 18x.
\theta =\frac{54\sqrt{x^{2}}-180}{18x}
Dělení číslem 18x ruší násobení číslem 18x.
\theta =\frac{3\sqrt{x^{2}}-10}{x}
Vydělte číslo 54\sqrt{x^{2}}-180 číslem 18x.
8\times 18+36+18\theta x=54\sqrt{x^{2}}
Vynásobte obě strany rovnice hodnotou 18.
144+36+18\theta x=54\sqrt{x^{2}}
Vynásobením 8 a 18 získáte 144.
180+18\theta x=54\sqrt{x^{2}}
Sečtením 144 a 36 získáte 180.
18\theta x=54\sqrt{x^{2}}-180
Odečtěte 180 od obou stran.
18x\theta =54\sqrt{x^{2}}-180
Rovnice je ve standardním tvaru.
\frac{18x\theta }{18x}=\frac{54|x|-180}{18x}
Vydělte obě strany hodnotou 18x.
\theta =\frac{54|x|-180}{18x}
Dělení číslem 18x ruší násobení číslem 18x.
\theta =\frac{3|x|-10}{x}
Vydělte číslo 54|x|-180 číslem 18x.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}