Vyřešit pro: v
v\geq -21
Sdílet
Zkopírováno do schránky
5v-36-8v\leq 27
Odečtěte 8v od obou stran.
-3v-36\leq 27
Sloučením 5v a -8v získáte -3v.
-3v\leq 27+36
Přidat 36 na obě strany.
-3v\leq 63
Sečtením 27 a 36 získáte 63.
v\geq \frac{63}{-3}
Vydělte obě strany hodnotou -3. Protože je -3 záporné, směr nerovnice se změní.
v\geq -21
Vydělte číslo 63 číslem -3 a dostanete -21.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}