Rozložit
\left(x-2\right)\left(2x-1\right)\left(x^{2}+1\right)
Vyhodnotit
\left(x-2\right)\left(2x-1\right)\left(x^{2}+1\right)
Graf
Sdílet
Zkopírováno do schránky
2x^{4}-5x^{3}+4x^{2}-5x+2=0
Pokud chcete výraz vynásobit, vyřešte rovnici, ve které se rovná 0.
±1,±2,±\frac{1}{2}
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu 2 a q je dělitelem vedoucího koeficientu 2. Uveďte všechny kandidáty \frac{p}{q}
x=2
Najděte jeden takový kořen tak, že vyzkoušíte všechny celočíselné hodnoty od nejmenší hodnoty po absolutní hodnotu. Pokud žádné celočíselné kořeny nenajdete, vyzkoušejte zlomky.
2x^{3}-x^{2}+2x-1=0
Podle faktoru binomická x-k je součinitel polynomu pro každý kořenový k. Vydělte číslo 2x^{4}-5x^{3}+4x^{2}-5x+2 číslem x-2 a dostanete 2x^{3}-x^{2}+2x-1. Pokud chcete rozložit výsledek, vyřešte rovnici, ve které se rovná: 0.
±\frac{1}{2},±1
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu -1 a q je dělitelem vedoucího koeficientu 2. Uveďte všechny kandidáty \frac{p}{q}
x=\frac{1}{2}
Najděte jeden takový kořen tak, že vyzkoušíte všechny celočíselné hodnoty od nejmenší hodnoty po absolutní hodnotu. Pokud žádné celočíselné kořeny nenajdete, vyzkoušejte zlomky.
x^{2}+1=0
Podle faktoru binomická x-k je součinitel polynomu pro každý kořenový k. Vydělte číslo 2x^{3}-x^{2}+2x-1 číslem 2\left(x-\frac{1}{2}\right)=2x-1 a dostanete x^{2}+1. Pokud chcete rozložit výsledek, vyřešte rovnici, ve které se rovná: 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
Všechny rovnice typu ax^{2}+bx+c=0 je možné vyřešit pomocí vzorce kvadratické rovnice: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. V uvedeném vzorci nahraďte a hodnotou 1, b hodnotou 0 a c hodnotou 1.
x=\frac{0±\sqrt{-4}}{2}
Proveďte výpočty.
x^{2}+1
Polynom x^{2}+1 není rozložitelný, protože nemá žádné racionální kořeny.
\left(x-2\right)\left(2x-1\right)\left(x^{2}+1\right)
Přepište rozložený výraz pomocí získaných kořenů.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}