Vyhodnotit
\left(x-1\right)\left(2x-1\right)\left(x+3\right)
Rozložit
\left(x-1\right)\left(2x-1\right)\left(x+3\right)
Graf
Sdílet
Zkopírováno do schránky
2x^{3}+3x^{2}-6x-2x+3
Vydělte číslo 4 číslem 2 a dostanete 2.
2x^{3}+3x^{2}-8x+3
Sloučením -6x a -2x získáte -8x.
2x^{3}+3x^{2}-8x+3
Vynásobte a slučte stejné členy.
\left(2x-1\right)\left(x^{2}+2x-3\right)
Podle věty o racionálních kořenech jsou všechny racionální kořeny polynomu ve tvaru \frac{p}{q}, kde p je dělitelem konstantního členu 3 a q je dělitelem vedoucího koeficientu 2. Jeden takový kořen je \frac{1}{2}. Součinitele polynomu rozdělíte 2x-1.
a+b=2 ab=1\left(-3\right)=-3
Zvažte x^{2}+2x-3. Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx-3. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=-1 b=3
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Jediná taková dvojice představuje systémové řešení.
\left(x^{2}-x\right)+\left(3x-3\right)
Zapište x^{2}+2x-3 jako: \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Koeficient x v prvním a 3 ve druhé skupině.
\left(x-1\right)\left(x+3\right)
Vytkněte společný člen x-1 s využitím distributivnosti.
\left(x-1\right)\left(2x-1\right)\left(x+3\right)
Přepište celý rozložený výraz.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}