Vyřešte pro: x
x=2\sqrt{6}+10\approx 14,898979486
x=10-2\sqrt{6}\approx 5,101020514
Graf
Sdílet
Zkopírováno do schránky
2\left(x-10\right)^{2}-48+48=48
Připočítejte 48 k oběma stranám rovnice.
2\left(x-10\right)^{2}=48
Odečtením čísla 48 od něj samotného dostaneme hodnotu 0.
\frac{2\left(x-10\right)^{2}}{2}=\frac{48}{2}
Vydělte obě strany hodnotou 2.
\left(x-10\right)^{2}=\frac{48}{2}
Dělení číslem 2 ruší násobení číslem 2.
\left(x-10\right)^{2}=24
Vydělte číslo 48 číslem 2.
x-10=2\sqrt{6} x-10=-2\sqrt{6}
Vypočítejte druhou odmocninu obou stran rovnice.
x-10-\left(-10\right)=2\sqrt{6}-\left(-10\right) x-10-\left(-10\right)=-2\sqrt{6}-\left(-10\right)
Připočítejte 10 k oběma stranám rovnice.
x=2\sqrt{6}-\left(-10\right) x=-2\sqrt{6}-\left(-10\right)
Odečtením čísla -10 od něj samotného dostaneme hodnotu 0.
x=2\sqrt{6}+10
Odečtěte číslo -10 od čísla 2\sqrt{6}.
x=10-2\sqrt{6}
Odečtěte číslo -10 od čísla -2\sqrt{6}.
x=2\sqrt{6}+10 x=10-2\sqrt{6}
Rovnice je teď vyřešená.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}