Vyřešte pro: m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&\mu =\frac{1}{1000000}\end{matrix}\right,
Vyřešte pro: μ
\left\{\begin{matrix}\\\mu =\frac{1}{1000000}\text{, }&\text{unconditionally}\\\mu \in \mathrm{R}\text{, }&m=0\end{matrix}\right,
Sdílet
Zkopírováno do schránky
1m=1000000\mu m
Výpočtem 10 na 6 získáte 1000000.
1m-1000000\mu m=0
Odečtěte 1000000\mu m od obou stran.
-1000000m\mu +m=0
Změňte pořadí členů.
\left(-1000000\mu +1\right)m=0
Slučte všechny členy obsahující m.
\left(1-1000000\mu \right)m=0
Rovnice je ve standardním tvaru.
m=0
Vydělte číslo 0 číslem 1-1000000\mu .
1m=1000000\mu m
Výpočtem 10 na 6 získáte 1000000.
1000000\mu m=1m
Přehoďte strany rovnice tak, aby všechny proměnné byly na její levé straně.
1000000m\mu =m
Změňte pořadí členů.
\frac{1000000m\mu }{1000000m}=\frac{m}{1000000m}
Vydělte obě strany hodnotou 1000000m.
\mu =\frac{m}{1000000m}
Dělení číslem 1000000m ruší násobení číslem 1000000m.
\mu =\frac{1}{1000000}
Vydělte číslo m číslem 1000000m.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}