Přejít k hlavnímu obsahu
Vyřešte pro: x
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

x^{2}-2x+1-4=0
Rozviňte výraz \left(x-1\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
x^{2}-2x-3=0
Odečtěte 4 od 1 a dostanete -3.
a+b=-2 ab=-3
Chcete-li rovnici vyřešit, součinitel x^{2}-2x-3 použijte vzorec x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=-3 b=1
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je záporný, má záporné číslo vyšší absolutní hodnotu než kladné číslo. Jediná taková dvojice představuje systémové řešení.
\left(x-3\right)\left(x+1\right)
Přepište rozložený výraz \left(x+a\right)\left(x+b\right) pomocí získaných hodnot.
x=3 x=-1
Chcete-li najít řešení rovnic, vyřešte x-3=0 a x+1=0.
x^{2}-2x+1-4=0
Rozviňte výraz \left(x-1\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
x^{2}-2x-3=0
Odečtěte 4 od 1 a dostanete -3.
a+b=-2 ab=1\left(-3\right)=-3
Chcete-li rovnici vyřešit, koeficient na levé straně seskupte. Nejprve je třeba přepsát levou stranu jako x^{2}+ax+bx-3. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
a=-3 b=1
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je záporný, má záporné číslo vyšší absolutní hodnotu než kladné číslo. Jediná taková dvojice představuje systémové řešení.
\left(x^{2}-3x\right)+\left(x-3\right)
Zapište x^{2}-2x-3 jako: \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Vytkněte x z výrazu x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Vytkněte společný člen x-3 s využitím distributivnosti.
x=3 x=-1
Chcete-li najít řešení rovnic, vyřešte x-3=0 a x+1=0.
x^{2}-2x+1-4=0
Rozviňte výraz \left(x-1\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
x^{2}-2x-3=0
Odečtěte 4 od 1 a dostanete -3.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, -2 za b a -3 za c.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Umocněte číslo -2 na druhou.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Vynásobte číslo -4 číslem -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Přidejte uživatele 4 do skupiny 12.
x=\frac{-\left(-2\right)±4}{2}
Vypočítejte druhou odmocninu čísla 16.
x=\frac{2±4}{2}
Opakem -2 je 2.
x=\frac{6}{2}
Teď vyřešte rovnici x=\frac{2±4}{2}, když ± je plus. Přidejte uživatele 2 do skupiny 4.
x=3
Vydělte číslo 6 číslem 2.
x=-\frac{2}{2}
Teď vyřešte rovnici x=\frac{2±4}{2}, když ± je minus. Odečtěte číslo 4 od čísla 2.
x=-1
Vydělte číslo -2 číslem 2.
x=3 x=-1
Rovnice je teď vyřešená.
x^{2}-2x+1-4=0
Rozviňte výraz \left(x-1\right)^{2} podle binomické věty \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
x^{2}-2x-3=0
Odečtěte 4 od 1 a dostanete -3.
x^{2}-2x=3
Přidat 3 na obě strany. Po přičtení hodnoty nula dostaneme původní hodnotu.
x^{2}-2x+1=3+1
Vydělte -2, koeficient x termínu 2 k získání -1. Potom přidejte čtvereček -1 na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
x^{2}-2x+1=4
Přidejte uživatele 3 do skupiny 1.
\left(x-1\right)^{2}=4
Činitel x^{2}-2x+1. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Vypočítejte druhou odmocninu obou stran rovnice.
x-1=2 x-1=-2
Proveďte zjednodušení.
x=3 x=-1
Připočítejte 1 k oběma stranám rovnice.